A gut-release blend of bioactive compounds in synergistic combination with organic acids on the performance of broilers challenged with Clostridium perfringens
DOI:
https://doi.org/10.31533/Keywords:
Additives, essential oils, poultry, performanceAbstract
This study aimed to evaluate the effects of bioactive compounds and organic acids blend with targeted release, in different dosages (150, 300, and 450 g/t) in the diet of broiler chickens, compared to the use of Enramycin. The birds were subjected to a microbial challenge through oral inoculation with Clostridium perfringens on days 12, 13, 14, and 15 of age, with a dose of 0.5 mL and a concentration of 1.0 x 10⁸ CFU/mL. Feed intake, weight gain, and feed conversion ratio were assessed during the phases of 1-7 days, 1-14 days, 1-21 days, 1-28 days, 1-35 days, and 1-42 days. Results indicated that total feed intake and live weight were higher (P < 0.001) for the control group (without challenge) and similar (no significant differences) to the treatment with 300 g/t of Avinatus® M300 up to 35 days of age. At 42 days, the final live weight did not differ significantly among all treatments (P > 0.05). Among treatments with enramycin and Avinatus® M300 at dosages of 150 and 450 g/t, no significant differences (P > 0.001) were observed in live weight. In the first week, the feed conversion ratio was better (P < 0.001) for the control group, while from the second to the sixth week, feed conversion ratio was similar (P > 0.001) across all treatments. By the end of the experiment, broilers fed with enramycin and Avinatus® M300 at a dosage of 150 g/t showed better feed conversion compared to the control group. It was concluded that Avinatus® M300 is effective in improving the animal performance of broilers under enteric challenge, making it a viable alternative to antibiotics as growth promoters.
References
Abdel-Wareth, A. A. A., & Lohakare, J. (2023). Bioactive lipid compounds as eco-friendly agents in the diets of broiler chicks for sustainable production and health status. Veterinary Sciences, 10(10), 612. https://doi.org/10.3390/vetsci10100612
ABPA. (2024). Associação brasileira de proteína animal. In Relatório Anual de Atividades.
ANUALPEC. (2024). Anuário da Pecuária Brasileira (20th ed., Vol. 1). Instituto FNP.
Bahram, S., Vince, A. R., & Prescott, J. F. (2012). The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Veterinary Research, 43(1), 74.
Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. https://doi.org/10.1111/1541-4337.12179.
Brewer, M. S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x.
Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2018). Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science & Technology, 71, 107–120. https://doi.org/https://doi.org/10.1016/j.tifs.2017.11.008.
Cima, E. G., Amorim, L. S. B., & Shikida, P. F. A. (2006). A importância da rastreabilidade para o sistema de segurança alimentar na indústria avícola. Revista da FAE, 9(1), 1–12.
Coban, H. B. (2020). Organic acids as antimicrobial food agents: applications and microbial productions. In Bioprocess and Biosystems Engineering (Vol. 43, Issue 4, pp. 569–591). https://doi.org/10.1007/s00449-019-02256-w.
El-Saadony, M. T., Umar, M., Hassan, F. U., Alagawany, M., Arif, M., Taha, A. E., Elnesr, S. S., El-Tarabily, K. A., & Abd El-Hack, M. E. (2022). Applications of butyric acid in poultry production: The dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. In Animal Health Research Reviews (Vol. 23, Issue 2, p. 136). https://doi.org/10.1017/S1466252321000220.
Fasina, Y. O., Newman, M. M., Stough, J. M., & Liles, M. R. (2016). Effect of Clostridium perfringens infection and antibiotic administration on microbiota in the small intestine of broiler chickens. Poultry Science, 95(2), 247–260. https://doi.org/http://dx.doi.org/10.3382/ps/pev329.
Gbassi, G. K., & Vandamme, T. (2012). Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics, 4(1), 149–163. https://dx.doi.org/10.3390%2Fpharmaceutics4010149.
Gopi, M. (2014). Essential Oils as a Feed Additive in Poultry Nutrition. Advances in Animal and Veterinary Sciences, 2(1), 1–7. https://doi.org/10.14737/journal.aavs/2014.2.1.1.7.
Jastrebski, S. F., Lamont, S. J., & Schmidt, C. J. (2017). Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis. PLoS ONE, 12(7), e0181900. https://doi.org/10.1371/journal.pone.0181900.
Kovanda, L., Zhang, W., Wei, X., Luo, J., Wu, X., Atwill, E. R., Vaessen, S., Li, X., & Liu, Y. (2019). In vitro antimicrobial activities of organic acids and their derivatives on several species of Gram-negative and Gram-positive bacteria. Molecules, 24(20), 3770. https://doi.org/10.3390/molecules24203770.
Lopes, J. B., Fernanda, J., Barbosa, L., & Lacava, P. (2021). Resistência antimicrobiana na saúde animal e pública: Revisão de literatura. Ciência & Inovação, 6(1), 74–83.
Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 1–25. https://doi.org/10.3390/molecules24224132.
Manaig, M. M., Cruz, J. F. D., Khasanah, H., Widianingrum, D. C., & Purnamasari, L. (2022). Heat stress management strategies using plant extracts in poultry. International Journal of Agriculture and Biology, 28(4). https://doi.org/10.17957/IJAB/15.1975.
Mastromatteo, M., Lucera, A., Sinigaglia, M., & Corbo, M. R. (2009). Combined effects of thymol, carvacrol and temperature on the quality of non-conventional poultry patties. Meat Science, 83(2), 246–254. https://doi.org/http://dx.doi.org/10.1016/j.meatsci.2009.05.007
Mejia, D. B., Peñuela-S, L. M., & Sanmiguel, R. A. (2018). El gran impacto de Clostridium perfringens en aves de corral. PUBVET, 12(9), 1–9. https://doi.org/10.31533/pubvet.v12n9a180.1-9
Mishra, B., & Jha, R. (2019). Oxidative stress in the poultry gut: Potential challenges and interventions. In Frontiers in Veterinary Science (Vol. 6, Issue MAR). https://doi.org/10.3389/fvets.2019.00060.
Nacif, E. L., Oliveira, G. H., & Santos, P. L. (2020). Efeito de aditivos alternativos sobre a conversão alimentar de frangos de corte durante diferentes fases de crescimento. Revista Brasileira de Zootecnia, 49(12), e20190111.
Patra, A. K. (2019). Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Medicinal Chemistry, 20(7), 566–577. https://doi.org/10.2174/1389557520666191226111405.
Pitino, R., De Marchi, M., Manuelian, C. L., Johnson, M., Simoni, M., Righi, F., & Tsiplakou, E. (2021). Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on yield, quality, and oxidative status of poultry products: A review of the literature of the last 20 years. In Antioxidants (Vol. 10, Issue 5, p. 757). https://doi.org/10.3390/antiox10050757.
Repik, C. F., Lisboa, A. C. L. C., Tukasan, B. C., & Girio, R. J. S. (2021). A resistência antimicrobiana na produção animal: Alerta no contexto da saúde única. PUBVET, 16(4), 1–6. https://doi.org/10.31533/pubvet.v16n04a1084.1-6.
Surai, P. F., & Earle-Payne, K. (2022). Antioxidant defenses and redox homeostasis in animals. In Antioxidants (Vol. 11, Issue 5, p. 1012). https://doi.org/10.3390/antiox11051012.
Swaggerty, C. L., Callaway, T. R., Kogut, M. H., Piva, A., & Grilli, E. (2019). Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms, 7(3), 65. https://doi.org/10.3390/microorganisms7030065.
Valadez-García, K. M., Avendaño-Reyes, L., Díaz-Molina, R., Mellado, M., Meza-Herrera, C. A., Correa-Calderón, A., & Macías-Cruz, U. (2021). Free ferulic acid supplementation of heat-stressed hair ewe lambs: Oxidative status, feedlot performance, carcass traits and meat quality. Meat Science, 173, 108395. https://doi.org/10.1016/j.meatsci.2020.108395.
Zaboli, G., Huang, X., Feng, X., & Ahn, D. U. (2019). How can heat stress affect chicken meat quality? - A review. Poultry Science, 98(3), 1551–1556. https://doi.org/10.3382/ps/pey399.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mariana Garcia Ornaghi, Caio Tellini, Rafaela Berto, Ricardo Araújo Castilho, Ivanor Nunes do Prado
This work is licensed under a Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.