Atividade antimicrobiana in vitro de baccharis, tamarindo, líquido da casca da castanha de caju e óleo de cravo contra bactérias ruminais Gram-negativas

Autores

  • Venício Macêdo Carvalho Universidade Estadual de Maringá
  • Vicente Díaz Avila Universidade Estadual de Maringá
  • Edinéia Bonin Universidade Estadual de Maringá
  • Rodolpho Martin do Prado Université Laval
  • Isolde Terezinha Santos Previdelli Universidade Estadual de Maringá
  • Anderson Valdiney Gomes Ramos Universidade Estadual de Maringá
  • Adriano Borges Meniqueti Universidade Estadual de Maringá
  • Debora Cristina Baldoqui Universidade Estadual de Maringá
  • Hilário Cuquetto Mantovani Universidade Federal de Viçosa
  • Ivanor Nunes do Prado Universidade Estadual de Maringá https://orcid.org/0000-0003-1058-7020

DOI:

https://doi.org/10.31533/pubvet.v18n03e1562

Palavras-chave:

Atividade antibacteriana, extratos naturais, óleo essencial, bactérias ruminais

Resumo

Este estudo teve como objetivo avaliar a atividade antibacteriana in vitro do extrato aquoso de Baccharis dracunculifolia e Tamarindus indica L., dos extratos naturais líquidos da casca da castanha de caju (LCC) e do óleo essencial (OE) de cravo contra cinco espécies de bactérias ruminais Gram-negativas. As culturas foram cultivadas em meio anaeróbio contendo 0,1, 0,2, 0,5 e 1,0 mg mL-1 dos extratos ou óleos. O crescimento foi avaliado monitorando a densidade óptica (DO 600 nm) em intervalos de 0, 8, 12 e 24 horas de incubação a 39° C. O extrato aquoso de baccharis e tamarindo e o extrato natural de LCC inibiram o crescimento de Prevotella albensis, Prevotella bryantii, Treponema saccharophilum e Succinivibrio dextrinosolvens. Para Prevotella ruminicola e Succinivibrio dextrinosolvens, a adição de 1,0 mg mL-1 de OE de folhas de cravo resultou em maior impacto na dinâmica de crescimento, com redução na densidade óptica em todos os intervalos de observações. Os resultados desta pesquisa estabelecem a eficácia dos aditivos naturais extratos aquosos de baccharis e tamarindo, LCC e óleo essencial de cravo, na atividade antimicrobiana in vitro contra as bactérias ruminais Gram-negativas analisadas.

Referências

Abukakar, M. G., Ukwuani, A. N., & Shehu, R. A. (2008). Phytochemical screening and antibacterial activity of Tamarindus indica pulp extract. Asian Journal of Biochemistry (Vol. 3, pp. 134–138). https://doi.org/https://bit.ly/2RoHlj0.

Andrade, T. D. J. A. D. S., Araújo, B. Q., Citó, A. M. D. G. L., Silva, J., Saffi, J., Richter, M. F., & Ferraz, A. D. B. F. (2011). Antioxidant properties and chemical composition of technical Cashew Nut Shell Liquid (tCNSL). Food Chemistry, 126(3), 1044–1048. https://doi.org/10.1016/j.foodchem.2010.11.122.

Arshad, M. S., Imran, M., Ahmed, A., Sohaib, M., Ullah, A., Nisa, M. un, Hina, G., Khalid, W., & Rehana, H. (2019). Tamarind: A diet‐based strategy against lifestyle maladies. Food Science & Nutrition, 7(May), 3378–3390. https://doi.org/10.1002/fsn3.1218.

Benchaar, C., & Greathead, H. (2011). Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166–167, 338–355. https://doi.org/10.1016/j.anifeedsci.2011.04.024.

Biondo, P. B. F., Carbonera, F., Zawadzki, F., Chiavelli, L. U. R., Pilau, E. J., Prado, I. N., & Visentainer, V. (2017). Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs and citrus. Current Bioactive Compounds, 13(2), 137–143. https://doi.org/10.2174/1573407212666160614080846.

Bonin, E., Carvalho, V. M., Avila, V. D., Santos, N. C. A., Benassi-Zanqueta, É., Lancheros, C. A. C., Previdelli, I. T. S., Ueda-Nakamura, T., Abreu Filho, B. A., & Prado, I. N. (2020). Baccharis dracunculifolia: Chemical constituents, cytotoxicity and antimicrobial activity. LWT - Food Science and Technology, 120, 1–10. https://doi.org/10.1016/j.lwt.2019.108920.

Boonsai, P., Phuwapraisirisan, P., & Chanchao, C. (2014). Antibacterial activity of a cardanol from Thai Apis mellifera propolis. International Journal of Medical Sciences, 11(4), 327–336. https://doi.org/10.7150/ijms.7373.

Campos, R., Bressan, J., Cristina, V., Jasinski, G., Zuccolotto, T., Eduardo, L., & Cerqueira, L. B. (2016). Baccharis (Asteraceae): Chemical constituents and biological activities. Chemistry and Biodiversity, 13, 1–17. https://doi.org/10.1002/cbdv.201500363.

Charisiadis, P., Kontogianni, V., Tsiafoulis, C., Tzakos, A., Siskos, M., & Gerothanassis, I. (2014). 1H-NMR as a structural and analytical tool of intra and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules, 19(9), 13643–13682. https://doi.org/10.3390/molecules190913643.

Cortés-Rojas, D. F., Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): A precious spice. Asian Pacific Journal of Tropical Biomedicine, 4(2), 90–96. https://doi.org/10.1016/S2221-1691(14)60215-X.

Cruz, O. T. B., Valero, M. V., Zawadzki, F., Rivaroli, D. C., Prado, R. M., Lima, B. S., & Prado, I. N. (2014). Effect of glycerine and essential oils (Anacardium occidentale and Ricinus communis) on animal performance, feed efficiency and carcass characteristics of crossbred bulls finished in a feedlot system. Italian Journal of Animal Science, 13(4), 3492.

Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23, 174–181. https://doi.org/10.1016/j.copbio.2011.08.007.

Das, P., Sreelatha, T., & Ganesh, A. (2004). Bio oil from pyrolysis of cashew nut shell-characterisation and related properties. Biomass and Bioenergy, 27(3), 265–275. https://doi.org/10.1016/j.biombioe.2003.12.001.

Devi, K. P., Nisha, S. A., Sakthivel, R., & Pandian, S. K. (2010). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology, 130(1), 107–115. https://doi.org/10.1016/j.jep.2010.04.025.

Diggle, P., Diggle, P. J., Heagerty, P., Liang, K.-Y., Heagerty, P. J., & Zeger, S. (2002). Analysis of longitudinal data. Oxford University Press.

Frizzo, C. D., Atti-Serafini, L., Laguna, S. E., Cassel, E., Lorenzo, D., & Dellacassa, E. (2008). Essential oil variability in Baccharis uncinella DC and Baccharis dracunculifolia DC growing wild in southern Brazil, Bolivia and Uruguay. Flavour and Fragrance Journal, 23(2), 99–106. https://doi.org/10.1002/ffj.1862.

Gill, A. O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108(1), 1–9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009.

Hemaiswarya, S., & Doble, M. (2009). Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 16(11), 997–1005. https://doi.org/10.1016/j.phymed.2009.04.006.

Hobson, P. N. (1969). Rumen Bacteria. In Methods in Microbiology (The Rowett, Vol. 3B, pp. 133–149). https://doi.org/10.1016/S0580-9517(08)70504-X.

Hungate, Robert. E. (1966). The Rumen and its microbes. In The rumen and its microbes (Academic P). https://doi.org/10.1016/B978-1-4832-3308-6.50005-X.

Knothe, G., & Kenar, J. A. (2004). Determination of the fatty acid profile by1H-NMR spectroscopy. European Journal of Lipid Science and Technology, 106(2), 88–96. https://doi.org/10.1002/ejlt.200300880.

Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., Ohta, S., & Kamikawa, T. (1993). Structure-antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, 41(6), 1016–1019. https://doi.org/10.1021/jf00030a036.

Kubo, I., Nihei, K., & Tsujimoto, K. (2003). Antibacterial Action of Anacardic Acids against Methicillin Resistant Staphylococcus aureus (MRSA). Journal of Agricultural and Food Chemistry, 51(26), 7624–7628. https://doi.org/10.1021/jf034674f.

Lage, T. C. A., Montanari, R. M., Fernandes, S. A., Monteiro, C. M. O., Senra, T. O. S., Zeringota, V., Matos, R., & Daemon, E. (2015). Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia de Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Experimental Parasitology, 148, 24–29. https://doi.org/10.1016/j.exppara.2014.10.011.

Medeiros, M. C., Santos, E. V., Martínez-Huitle, C. A., Fajardo, A. S., & Castro, S. S. L. (2020). Obtaining high-added value products from the technical cashew-nut shell liquid using electrochemical oxidation with BDD anodes. Separation and Purification Technology, 117099. https://doi.org/10.1016/j.seppur.2020.117099.

Mirzoeva, O. K., Grishanin, R. N., & Calder, P. C. (1997). Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiological Research, 152(3), 239–246. https://doi.org/10.1016/S0944-5013(97)80034-1.

Monteschio, J. O., Souza, K. A., Vital, A. C. P., Guerrero, A., Valero, M. V., Kempinski, E. M. B. C., Barcelos, V. C., Nascimento, K. F., & Prado, I. N. (2017). Clove and rosemary essential oils and encapsuled active principles (eugenol, thymol and vanillin blend) on meat quality of feedlot-finished heifers. Meat Science, 130, 50–57. https://doi.org/10.1016/j.meatsci.2017.04.002.

Olagaray, K. E., & Bradford, B. J. (2019). Plant flavonoids to improve productivity of ruminants – A review. Animal Feed Science and Technology, 251, 21–36. https://doi.org/10.1016/j.anifeedsci.2019.02.004.

Ornaghi, M. G., Guerrero, A., Vital, A. C. P., Souza, K. A., Passetti, R. A. C., Mottin, C., Castilho, R. A., Sañudo, C., & Prado, I. N. (2020). Improvements in the quality of meat from beef cattle fed natural additives. Meat Science, 163, 108059. https://doi.org/10.1016/J.MEATSCI.2020.108059.

Ornaghi, M. G., Passetti, R. A. C., Torrecilhas, J. A., Mottin, C., Vital, A. P., Guerrero, A., Sañudo, C., Campo, M. M., & Prado, I. N. (2017). Essential oils in the diet of young bulls: Effect on animal performance, digestibility, temperament, feeding behaviour and carcass characteristics. Animal Feed Science and Technology, 234, 274–283. https://doi.org/10.1016/j.anifeedsci.2017.10.008.

Pandey, A., & Singh, P. (2011). Antibacterial activity of Syzygium aromaticum (clove) with metal ion effect against food borne pathogens. Asian Journal of Plant Science and Research, 1(2), 69–80.

Passone, M. A., Girardi, N. S., Ferrand, C. A., & Etcheverry, M. (2012). In vitro evaluation of five essential oils as botanical fungitoxicants for the protection of stored peanuts from Aspergillus flavus and A. parasiticus contamination. International Biodeterioration & Biodegradation, 70, 82–88. https://doi.org/10.1016/j.ibiod.2011.11.017.

Paula, J. T., Sousa, I. M. O., Foglio, M. A., & Cabral, F. A. (2017). Selective fractionation of supercritical extracts from leaves of Baccharis dracunculifolia. The Journal of Supercritical Fluids, 127, 62–70.

Razali, N., Junit, S. M., Ariffin, A., Siti, N., Ramli, F., & Aziz, A. A. (2015). Polyphenols from the extract and fraction of T. indica seeds protected HepG2 cells against oxidative stress. BMC Complementary and Alternative Medicine, 15:438, 1–16. https://doi.org/10.1186/s12906-015-0963-2.

Razali, N., Mat-Junit, S., Abdul-Muthalib, A. F., Subramaniam, S., & Abdul-Aziz, A. (2012). Effects of various solvents on the extraction of antioxidant phenolics from the leaves, seeds, veins and skins of Tamarindus indica L. Food Chemistry, 131, 441–448. https://doi.org/10.1016/j.foodchem.2011.09.001.

Rivaroli, D. C., Campo, M. M., Sañudo, C., Guerrero, A., Jorge, A. M., Vital, A. C. P., Valero, M. V., Prado, R. M., & Prado, I. N. (2020). Effect of an essential oils blend on meat characteristics of crossbred heifers finished on a high-grain diet in a feedlot. Animal Production Science, 60(4), 595–602. https://doi.org/https://doi.org/10.1071/AN18620.

Rivero-Cruz, J., Rodríguez de San Miguel, E., Robles-Obregón, S., Hernández-Espino, C., Rivero-Cruz, B., Pedraza-Chaverri, J., & Esturau-Escofet, N. (2017). Prediction of antimicrobial and antioxidant activities of Mexican oropolis by 1H-NMR spectroscopy and chemometrics data analysis. Molecules, 22(7), 1184. https://doi.org/10.3390/molecules22071184.

Salazar, G. J. T., Sousa, J. P., Lima, C. N. F., Lemos, I. C. S., Silva, A. R. P., Freitas, T. S., Coutinho, H. D. M., Silva, L. E., Amaral, W., & Deschamps, C. (2018). Phytochemical characterization of the Baccharis dracunculifolia DC (Asteraceae) essential oil and antibacterial activity evaluation. Industrial Crops & Products, 122, 591–595. https://doi.org/10.1016/j.indcrop.2018.06.052.

Siddhuraju, P. (2007). Antioxidant activity of polyphenolic compounds extracted from defatted raw and dry heated Tamarindus indica seed coat. LWT - Food Science and Technology, 40, 982–990. https://doi.org/10.1016/j.lwt.2006.07.010.

Souza, C. M., Oliveira, R. L., Voltolini, T. V., Menezes, D. R., Santos, N. J. A., Barbosa, A. M., Silva, T. M., Pereira, E. S., Bezerra, L. R., Santos, N. J. A., Barbosa, A. M., Silva, T. M., Pereira, E. S., & Bezerra, L. R. (2018). Lambs fed cassava silage with added tamarind residue: silage quality, intake, digestibility, nitrogen balance, growth performance and carcass quality. Animal Feed Science and Technology, 235, 50–59. https://doi.org/10.1016/j.anifeedsci.2017.11.007.

Souza, K. A., Monteschio, J. O., Mottin, C., Ramos, T. R., Pinto, L. A. M., Eiras, C. E., Guerrero, A., & Prado, I. N. (2019). Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedlot. Livestock Science, 220, 190–195. https://doi.org/10.1016/j.livsci.2018.12.026.

Stasiuk, M., & Kozubek, A. (2010). Biological activity of phenolic lipids. Cellular and Molecular Life Sciences, 67(6), 841–860.

Sudjaroen, Y., Haubner, R., Würtele, G., Hull, W. E., Erben, G., Spiegelhalder, B., Changbumrung, S., Bartsch, H., & Owen, R. W. (2005). Isolation and structure elucidation of phenolic antioxidants from Tamarind (Tamarindus indica L.) seeds and pericarp. Food and Chemical Toxicology, 43, 1673–1682. https://doi.org/10.1016/j.fct.2005.05.013.

Tarahovsky, Y. S., Kim, Y. A., Yagolnik, E. A., & Muzafarov, E. N. (2014). Flavonoid–membrane interactions: Involvement of flavonoid–metal complexes in raft signaling. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838(5), 1235–1246. https://doi.org/10.1016/j.bbamem.2014.01.021.

Trombetta, D., Castelli, F., Sarpietro, M. G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., & Bisignano, G. (2005). Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy, 49(6), 2474–2478. https://doi.org/10.1128/AAC.49.6.2474-2478.2005.

Tsiafoulis, C., Papaemmanouil, C., Alivertis, D., Tzamaloukas, O., Miltiadou, D., Balayssac, S., Malet-Martino, M., & Gerothanassis, I. (2019). NMR-Based metabolomics of the lipid fraction of organic and conventional bovine milk. Molecules, 24(6), 1067. https://doi.org/10.3390/molecules24061067.

Valero, M. V., Prado, R. M., Zawadzki, F., Eiras, C. E., Madrona, G. S., & Prado, I. N. (2014). Propolis and essential oils additives in the diets improved animal performance. Acta Scientiarum - Animal Sciences, 36(4), 419–426. https://doi.org/10.4025/actascianimsci.v36i4.23856.

Valero, M. V, Farias, M. S., Zawadzki, F., Prado, R. M., Fugita, C. A., Rivaroli, D. C., Ornaghi, M. G., & Prado, I. N. (2016). Feeding propolis or essential oils (cashew and castor) to bulls: performance, digestibility, and blood cell counts. Revista Colombiana de Ciencias Pecuarias, 29(1), 33–42.

Wallace, R. J., McEwan, N. R., McIntosh, F. M., Teferedegne, B., & Newbold, C. J. (2002). Natural products as manipulators of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 15(10), 1458–1468.

Wang, L., Nakanishi, T., Sato, Y., Oishi, K., Hirooka, H., Takahashi, K., & Kumagai, H. (2017). Effect of feeding tamarind kernel powder extract residue on digestibility, nitrogen availability and ruminal fermentation in wethers. Asian-Australasian Journal of Animal Sciences, 30(3), 379–385. https://doi.org/10.5713/ajas.16.0137.

Watanabe, Y., Suzuki, R., Koike, S., Nagashima, K., Mochizuki, M., Forster, R. J., & Kobayashi, Y. (2010). In vitro evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. Journal of Dairy Science, 93(11), 5258–5267. https://doi.org/10.3168/jds.2009-2754.

Zuccolotto, T., Bressan, J., Lourenço, A. V. F., Bruginski, E., Veiga, A., Marinho, J. V. N., Raeski, P. A., Heiden, G., Salvador, M. J., Murakami, F. S., Budel, J. M., & Campos, F. R. (2019). Chemical, antioxidant, and antimicrobial evaluation of essential oils and an anatomical study of the aerial parts from Baccharis species (Asteraceae). Chemistry & Biodiversity, 16(4), e1800547. https://doi.org/10.1002/cbdv.201800547.

Downloads

Publicado

22-02-2024

Edição

Seção

Nutrição e alimentação animal

Como Citar

1.
Carvalho VM, Díaz-Avila V, Bonin E, Prado RM do, Previdelli ITS, Ramos AVG, et al. Atividade antimicrobiana in vitro de baccharis, tamarindo, líquido da casca da castanha de caju e óleo de cravo contra bactérias ruminais Gram-negativas. Pubvet [Internet]. 22º de fevereiro de 2024 [citado 5º de janeiro de 2025];18(03):e1562. Disponível em: https://ojs.pubvet.com.br/index.php/revista/article/view/3557

Artigos mais lidos pelo mesmo(s) autor(es)