Uso de psyllium em diversos segmentos da indústria

Autores

  • Caroline Isabela da Silva Universidade Estadual de Maringá
  • Melina Aparecida Plastina Cardoso Universidade Estadual de Maringá https://orcid.org/0000-0002-0669-1469
  • Ana Carolina Pelaes Vital Universidade Estadual de Maringá
  • Jaísa Casetta Universidade Estadual de Maringá
  • Bianka Rocha Saraiva Universidade Estadual de Maringá
  • Ivanor Nunes do Prado Universidade Estadual de Maringá https://orcid.org/0000-0003-1058-7020
  • Rodolpho Martin do Prado Université de Laval, Quebéc, Canada

DOI:

https://doi.org/10.31533//pubvet.v19n03e1740

Palavras-chave:

Alimentos funcionais, mucilagem, Plantago ovata

Resumo

Os alimentos considerados funcionais são aqueles que, quando consumidos, podem trazer vários benefícios à saúde. Dentro destes encontram-se as plantas do gênero Plantago, que tem sido amplamente estudada por seus benefícios para a saúde humana, devido a suas propriedades como agente gelificante, agente suspensivo, ações farmacológicas, cicatrizante, controlador do colesterol, redutor de altos níveis de açúcar no sangue e amplamente utilizado como um laxante, devido a sua mucilagem que é um material fibroso com característica hidrofílica. A partir da planta através da moagem das sementes obtém-se o psyllium, este é solúvel em água e amplamente utilizado na indústria como alternativas verdes aos materiais sintéticos tradicionais. A seguinte revisão é baseada em estudos das diferentes formas de uso do psyllium com resultados já conhecidos, trazendo informações que podem ser uteis para futuras pesquisas e desenvolvimento de novos produtos.

Referências

Anderson, J. W., Allgood, L. D., Turner, J., Oeltgen, P. R., & Daggy, B. P. (1999). Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. The American Journal of Clinical Nutrition, 70(4), 466–473. https://doi.org/10.1093/ajcn/70.4.466.

Basiri, S., Shekarforoush, S. S., Mazkour, S., Modabber, P., & Kordshouli, F. Z. (2020). Evaluating the potential of mucilaginous seed of psyllium (Plantago ovata) as a new lead biosorbent. Bioactive Carbohydrates and Dietary Fibre, 24, 100242. https://doi.org/10.1016/j.bcdf.2020.100242.

Beara, I. N., Lesjak, M. M., Orčić, D. Z., Simin, N. Đ., Četojević-Simin, D. D., Božin, B. N., & Mimica-Dukić, N. M. (2012). Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Science and Technology, 47(1), 64–70. https://doi.org/10.1016/j.lwt.2012.01.001.

Belorio, M. L. S. (2020). Empleo del psyllium para el desarrollo de nuevos productos a base de cereales.

Belorio, M., Marcondes, G., & Gómez, M. (2020). Influence of psyllium versus xanthan gum in starch properties. Food Hydrocolloids, 105, 105843. https://doi.org/10.1016/j.foodhyd.2020.105843.

Board, N. (2003). Plantago ovata Forsk: Cultivation. In: N. Board (Org.), Herbs cultivation and their utilization (p. 218–228). Asia Pacific Business Pres inc.

Das, A. K., Nanda, P. K., Madane, P., Biswas, S., Das, A., Zhang, W., & Lorenzo, J. M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010.

Dhar, M. K., Kaul, S., Sareen, S., & Koul, A. K. (2005). Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Plant Genetic Resources, 3(2), 252–263. https://doi.org/10.1079/pgr200582.

Erdogan, A., Rao, S. S. C., Thiruvaiyaru, D., Lee, Y. Y., Coss Adame, E., Valestin, J., & O’Banion, M. (2016). Randomised clinical trial: mixed soluble/insoluble fibre vs. psyllium for chronic constipation. Alimentary Pharmacology & Therapeutics, 44(1), 35–44. https://doi.org/10.1111/apt.13647.

Filipčev, B., Pojić, M., Šimurina, O., Mišan, A., & Mandić, A. (2021). Psyllium as an improve in gluten-free breads: Effect on volume, crumb texture, moisture binding and staling kinetics. LWT, 151, 112156. https://doi.org/10.1016/j.lwt.2021.112156.

Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L., & Marlett, J. A. (2004). The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydrate Research, 339(11), 2009–2017. https://doi.org/10.1016/j.carres.2004.05.023.

Fradinho, P., Soares, R., Niccolai, A., Sousa, I., & Raymundo, A. (2020). Psyllium husk gel to reinforce structure of gluten-free pasta? LWT, 131, 109787. https://doi.org/10.1016/j.lwt.2020.109787.

Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542–1547. https://doi.org/10.1016/j.foodhyd.2008.10.012.

Guo, Q., Cui, S. W., Wang, Q., & Young, J. C. (2008). Fractionation and physicochemical characterization of psyllium gum. Carbohydrate Polymers, 73(1), 35–43. https://doi.org/10.1016/j.foodhyd.2010.09.027.

Gupta, R. R., Agrawal, C. G., Singh, G. P., & Ghatak, A. (1994). Lipid-lowering efficacy of psyllium hydrophilic mucilloid in non-insulin dependent diabetes mellitus with hyperlipidaemia. The Indian Journal of Medical Research, 100, 237–241.

Han, N., Wang, L., Song, Z., Lin, J., Ye, C., Liu, Z., & Yin, J. (2016). Optimization and antioxidant activity of polysaccharides from Plantago depressa. International Journal of Biological Macromolecules, 93, 644–654.

Jiménez-Colmenero, F., Herrero, A. M., Cofrades, S., & Ruiz-Capillas, C. (2012). Meat and functional foods. In: Y. H. Hui (Org.), Handbook of meat and meat processing (Vol. 1, Número 2, p. 225–248). CRC Press. Taylor Francis Group. https://doi.org/10.1016/j.foodhyd.2011.04.007

Jovanovski, E., Yashpal, S., Komishon, A., Zurbau, A., Blanco Mejia, S., Ho, H. V. T., Li, D., Sievenpiper, J., Duvnjak, L., & Vuksan, V. (2018). Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 108(5), 922–932. https://doi.org/10.1093/ajcn/nqy115.

Kaur, S., & Das, M. (2011). Functional foods: An overview. Food Science and Biotechnology, 20(4), 861. https://doi.org/10.1007/s10068-011-0121-7.

Krystyjan, M., Khachatryan, G., Ciesielski, W., Buksa, K., & Sikora, M. (2017). Preparation and characteristics of mechanical and functional properties of starch/Plantago psyllium seeds mucilage films. Starch‐Stärke, 69(11–12), 1700014.

Kumar, D., Pandey, J., & Kumar, P. (2018). Microwave assisted synthesis of binary grafted psyllium and its utility in anticancer formulation. Carbohydrate Polymers, 179. https://doi.org/10.1016/j.carbpol.2017.09.093.

Kumar, D., Pandey, J., Kumar, P., & Raj, V. (2017). Psyllium mucilage and its use in pharmaceutical field: An overview. Current Synthetic and System Biology, 5(1), 1–7. https://doi.org/10.4172/2332-0737.1000134.

Ladjevardi, Z. S., Gharibzahedi, S. M. T., & Mousavi, M. (2015). Development of a stable low-fat yogurt gel using functionality of psyllium (Plantago ovata Forsk) husk gum. Carbohydrate Polymers, 125, 272–280. https://doi.org/10.1002/star.201700014.

Marlett, J. A., & Fischer, M. H. (2003). The active fraction of psyllium seed husk. Proceedings of the Nutrition Society, 62(1), 207–209. https://doi.org/10.1079/PNS2002201.

McRorie, J. W., Daggy, B. P., Morel, J. G., Diersing, P. S., Miner, P. B., & Robinson, M. (1998). Psyllium is superior to docusate sodium for treatment of chronic constipation. Alimentary Pharmacology and Therapeutics, 12(5), 491.

Mishra, S., Sinha, S., Dey, K. P., & Sen, G. (2014). Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydrate Polymers, 99, 462–468. https://doi.org/10.1016/j.carbpol.2013.08.047.

Monge Neto, A. Á., Tomazini, L. F., Mizuta, A. G., Corrêa, R. C. G., Madrona, G. S., de Moraes, F. F., & Peralta, R. M. (2021). Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocolloids, 112, 106333. https://doi.org/10.1016/j.foodhyd.2020.106333.

Patel, M. K., Tanna, B., Gupta, H., Mishra, A., & Jha, B. (2019). Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. International Journal of Biological Macromolecules, 133, 190–201. https://doi.org/10.1016/j.ijbiomac.2019.04.062.

Patel, M. K., Tanna, B., Mishra, A., & Jha, B. (2018). Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves. International Journal of Biological Macromolecules, 118, 976–987. https://doi.org/10.1016/j.ijbiomac.2018.06.139.

Pejcz, E., Spychaj, R., Wojciechowicz-Budzisz, A., & Gil, Z. (2018). The effect of Plantago seeds and husk on wheat dough and bread functional properties. LWT, 96, 371–377. https://doi.org/10.1016/j.lwt.2018.05.060.

Poddar, S., Agarwal, P. S., Sahi, A. K., Varshney, N., Vajanthri, K. Y., & Mahto, S. K. (2021). Fabrication and characterization of electrospun psyllium husk‐based nanofibers for tissue regeneration. Journal of Applied Polymer Science, 138(24), 50569. https://doi.org/10.1002/app.50569.

Ricklefs-Johnson, K., Johnston, C. S., & Sweazea, K. L. (2017). Ground flaxseed increased nitric oxide levels in adults with type 2 diabetes: A randomized comparative effectiveness study of supplemental flaxseed and psyllium fiber. Obesity Medicine, 5, 16–24. https://doi.org/10.1016/j.obmed.2017.01.002.

Santos, F. G., Aguiar, E. V, Centeno, A. C. L. S., Rosell, C. M., & Capriles, V. D. (2020). Effect of added psyllium and food enzymes on quality attributes and shelf life of chickpea-based gluten-free bread. LWT, 134, 110025. https://doi.org/10.1016/j.lwt.2020.110025.

Santos, F. G., Aguiar, E. V, Rosell, C. M., & Capriles, V. D. (2021). Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread’s quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids, 113, 106487. https://doi.org/10.1016/j.foodhyd.2020.106487.

Sierra, M., García, J. J., Fernández, N., Diez, M. J., & Calle, A. P. (2002). Therapeutic effects of psyllium in type 2 diabetic patients. European Journal of Clinical Nutrition, 56(9), 830–842. https://doi.org/.

Silva, A. P. S., Zotti, C. A., Carvalho, R. F., Corte, R. R., Cônsolo, N. R. B., Silva, S. L., & Leme, P. R. (2019). Effect of replacing antibiotics with functional oils following an abrupt transition to high-concentrate diets on performance and carcass traits of Nellore cattle. Animal Feed Science and Technology, 247, 53–62. https://doi.org/10.1016/j.anifeedsci.2018.10.015.

Singh, B. (2007). Psyllium as therapeutic and drug delivery agent. International Journal of Pharmaceutics, 334(1–2), 1–14.

Thakur, V. K., & Thakur, M. K. (2014). Recent trends in hydrogels based on psyllium polysaccharide: a review. Journal of Cleaner Production, 82, 1–15. https://doi.org/10.1016/j.jclepro.2014.06.066.

Tóth, A., & Halász, K. (2019). Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour. Food Packaging and Shelf Life, 20, 100299. https://doi.org/10.1016/j.fpsl.2019.01.003.

Valenzuela, A. B., Sanhueza, J., & Nieto, S. (2003). Natural antioxidants in functional foods: From food safety to health benefits. Em Grasas y Aceites (Vol. 54, Número 3, p. 295–303). https://doi.org/10.3989/gya.2003.v54.i3.245.

Wahid, A., Mahmoud, S. M. N., Attia, E. Z., Yousef, A.-S., Okasha, A. M. M., & Soliman, H. A. (2020). Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. South African Journal of Botany, 130, 208–214. https://doi.org/10.1016/j.sajb.2020.01.007.

Wildman, R. E. C., Wildman, R., & Wallace, T. C. (2016). Handbook of nutraceuticals and functional foods. Boca Raton.

Zhang, J., Wen, C., Zhang, H., & Duan, Y. (2019). Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. International Journal of Biological Macromolecules, 139, 409–420. https://doi.org/10.1016/j.ijbiomac.2019.08.014.

Fonte: Pexels.

Downloads

Publicado

11-03-2025

Edição

Seção

Ciência e tecnologia de alimentos

Como Citar

1.
Silva CI da, Cardoso MAP, Vital ACP, Casetta J, Saraiva BR, do Prado IN, et al. Uso de psyllium em diversos segmentos da indústria. Pubvet [Internet]. 11º de março de 2025 [citado 30º de março de 2025];19(03):e1740. Disponível em: https://ojs.pubvet.com.br/index.php/revista/article/view/4027

Artigos mais lidos pelo mesmo(s) autor(es)