Uso de psyllium em diversos segmentos da indústria
DOI:
https://doi.org/10.31533//pubvet.v19n03e1740Palavras-chave:
Alimentos funcionais, mucilagem, Plantago ovataResumo
Os alimentos considerados funcionais são aqueles que, quando consumidos, podem trazer vários benefícios à saúde. Dentro destes encontram-se as plantas do gênero Plantago, que tem sido amplamente estudada por seus benefícios para a saúde humana, devido a suas propriedades como agente gelificante, agente suspensivo, ações farmacológicas, cicatrizante, controlador do colesterol, redutor de altos níveis de açúcar no sangue e amplamente utilizado como um laxante, devido a sua mucilagem que é um material fibroso com característica hidrofílica. A partir da planta através da moagem das sementes obtém-se o psyllium, este é solúvel em água e amplamente utilizado na indústria como alternativas verdes aos materiais sintéticos tradicionais. A seguinte revisão é baseada em estudos das diferentes formas de uso do psyllium com resultados já conhecidos, trazendo informações que podem ser uteis para futuras pesquisas e desenvolvimento de novos produtos.
Referências
Anderson, J. W., Allgood, L. D., Turner, J., Oeltgen, P. R., & Daggy, B. P. (1999). Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. The American Journal of Clinical Nutrition, 70(4), 466–473. https://doi.org/10.1093/ajcn/70.4.466.
Basiri, S., Shekarforoush, S. S., Mazkour, S., Modabber, P., & Kordshouli, F. Z. (2020). Evaluating the potential of mucilaginous seed of psyllium (Plantago ovata) as a new lead biosorbent. Bioactive Carbohydrates and Dietary Fibre, 24, 100242. https://doi.org/10.1016/j.bcdf.2020.100242.
Beara, I. N., Lesjak, M. M., Orčić, D. Z., Simin, N. Đ., Četojević-Simin, D. D., Božin, B. N., & Mimica-Dukić, N. M. (2012). Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Science and Technology, 47(1), 64–70. https://doi.org/10.1016/j.lwt.2012.01.001.
Belorio, M. L. S. (2020). Empleo del psyllium para el desarrollo de nuevos productos a base de cereales.
Belorio, M., Marcondes, G., & Gómez, M. (2020). Influence of psyllium versus xanthan gum in starch properties. Food Hydrocolloids, 105, 105843. https://doi.org/10.1016/j.foodhyd.2020.105843.
Board, N. (2003). Plantago ovata Forsk: Cultivation. In: N. Board (Org.), Herbs cultivation and their utilization (p. 218–228). Asia Pacific Business Pres inc.
Das, A. K., Nanda, P. K., Madane, P., Biswas, S., Das, A., Zhang, W., & Lorenzo, J. M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010.
Dhar, M. K., Kaul, S., Sareen, S., & Koul, A. K. (2005). Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Plant Genetic Resources, 3(2), 252–263. https://doi.org/10.1079/pgr200582.
Erdogan, A., Rao, S. S. C., Thiruvaiyaru, D., Lee, Y. Y., Coss Adame, E., Valestin, J., & O’Banion, M. (2016). Randomised clinical trial: mixed soluble/insoluble fibre vs. psyllium for chronic constipation. Alimentary Pharmacology & Therapeutics, 44(1), 35–44. https://doi.org/10.1111/apt.13647.
Filipčev, B., Pojić, M., Šimurina, O., Mišan, A., & Mandić, A. (2021). Psyllium as an improve in gluten-free breads: Effect on volume, crumb texture, moisture binding and staling kinetics. LWT, 151, 112156. https://doi.org/10.1016/j.lwt.2021.112156.
Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L., & Marlett, J. A. (2004). The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydrate Research, 339(11), 2009–2017. https://doi.org/10.1016/j.carres.2004.05.023.
Fradinho, P., Soares, R., Niccolai, A., Sousa, I., & Raymundo, A. (2020). Psyllium husk gel to reinforce structure of gluten-free pasta? LWT, 131, 109787. https://doi.org/10.1016/j.lwt.2020.109787.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542–1547. https://doi.org/10.1016/j.foodhyd.2008.10.012.
Guo, Q., Cui, S. W., Wang, Q., & Young, J. C. (2008). Fractionation and physicochemical characterization of psyllium gum. Carbohydrate Polymers, 73(1), 35–43. https://doi.org/10.1016/j.foodhyd.2010.09.027.
Gupta, R. R., Agrawal, C. G., Singh, G. P., & Ghatak, A. (1994). Lipid-lowering efficacy of psyllium hydrophilic mucilloid in non-insulin dependent diabetes mellitus with hyperlipidaemia. The Indian Journal of Medical Research, 100, 237–241.
Han, N., Wang, L., Song, Z., Lin, J., Ye, C., Liu, Z., & Yin, J. (2016). Optimization and antioxidant activity of polysaccharides from Plantago depressa. International Journal of Biological Macromolecules, 93, 644–654.
Jiménez-Colmenero, F., Herrero, A. M., Cofrades, S., & Ruiz-Capillas, C. (2012). Meat and functional foods. In: Y. H. Hui (Org.), Handbook of meat and meat processing (Vol. 1, Número 2, p. 225–248). CRC Press. Taylor Francis Group. https://doi.org/10.1016/j.foodhyd.2011.04.007
Jovanovski, E., Yashpal, S., Komishon, A., Zurbau, A., Blanco Mejia, S., Ho, H. V. T., Li, D., Sievenpiper, J., Duvnjak, L., & Vuksan, V. (2018). Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 108(5), 922–932. https://doi.org/10.1093/ajcn/nqy115.
Kaur, S., & Das, M. (2011). Functional foods: An overview. Food Science and Biotechnology, 20(4), 861. https://doi.org/10.1007/s10068-011-0121-7.
Krystyjan, M., Khachatryan, G., Ciesielski, W., Buksa, K., & Sikora, M. (2017). Preparation and characteristics of mechanical and functional properties of starch/Plantago psyllium seeds mucilage films. Starch‐Stärke, 69(11–12), 1700014.
Kumar, D., Pandey, J., & Kumar, P. (2018). Microwave assisted synthesis of binary grafted psyllium and its utility in anticancer formulation. Carbohydrate Polymers, 179. https://doi.org/10.1016/j.carbpol.2017.09.093.
Kumar, D., Pandey, J., Kumar, P., & Raj, V. (2017). Psyllium mucilage and its use in pharmaceutical field: An overview. Current Synthetic and System Biology, 5(1), 1–7. https://doi.org/10.4172/2332-0737.1000134.
Ladjevardi, Z. S., Gharibzahedi, S. M. T., & Mousavi, M. (2015). Development of a stable low-fat yogurt gel using functionality of psyllium (Plantago ovata Forsk) husk gum. Carbohydrate Polymers, 125, 272–280. https://doi.org/10.1002/star.201700014.
Marlett, J. A., & Fischer, M. H. (2003). The active fraction of psyllium seed husk. Proceedings of the Nutrition Society, 62(1), 207–209. https://doi.org/10.1079/PNS2002201.
McRorie, J. W., Daggy, B. P., Morel, J. G., Diersing, P. S., Miner, P. B., & Robinson, M. (1998). Psyllium is superior to docusate sodium for treatment of chronic constipation. Alimentary Pharmacology and Therapeutics, 12(5), 491.
Mishra, S., Sinha, S., Dey, K. P., & Sen, G. (2014). Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydrate Polymers, 99, 462–468. https://doi.org/10.1016/j.carbpol.2013.08.047.
Monge Neto, A. Á., Tomazini, L. F., Mizuta, A. G., Corrêa, R. C. G., Madrona, G. S., de Moraes, F. F., & Peralta, R. M. (2021). Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocolloids, 112, 106333. https://doi.org/10.1016/j.foodhyd.2020.106333.
Patel, M. K., Tanna, B., Gupta, H., Mishra, A., & Jha, B. (2019). Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. International Journal of Biological Macromolecules, 133, 190–201. https://doi.org/10.1016/j.ijbiomac.2019.04.062.
Patel, M. K., Tanna, B., Mishra, A., & Jha, B. (2018). Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves. International Journal of Biological Macromolecules, 118, 976–987. https://doi.org/10.1016/j.ijbiomac.2018.06.139.
Pejcz, E., Spychaj, R., Wojciechowicz-Budzisz, A., & Gil, Z. (2018). The effect of Plantago seeds and husk on wheat dough and bread functional properties. LWT, 96, 371–377. https://doi.org/10.1016/j.lwt.2018.05.060.
Poddar, S., Agarwal, P. S., Sahi, A. K., Varshney, N., Vajanthri, K. Y., & Mahto, S. K. (2021). Fabrication and characterization of electrospun psyllium husk‐based nanofibers for tissue regeneration. Journal of Applied Polymer Science, 138(24), 50569. https://doi.org/10.1002/app.50569.
Ricklefs-Johnson, K., Johnston, C. S., & Sweazea, K. L. (2017). Ground flaxseed increased nitric oxide levels in adults with type 2 diabetes: A randomized comparative effectiveness study of supplemental flaxseed and psyllium fiber. Obesity Medicine, 5, 16–24. https://doi.org/10.1016/j.obmed.2017.01.002.
Santos, F. G., Aguiar, E. V, Centeno, A. C. L. S., Rosell, C. M., & Capriles, V. D. (2020). Effect of added psyllium and food enzymes on quality attributes and shelf life of chickpea-based gluten-free bread. LWT, 134, 110025. https://doi.org/10.1016/j.lwt.2020.110025.
Santos, F. G., Aguiar, E. V, Rosell, C. M., & Capriles, V. D. (2021). Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread’s quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids, 113, 106487. https://doi.org/10.1016/j.foodhyd.2020.106487.
Sierra, M., García, J. J., Fernández, N., Diez, M. J., & Calle, A. P. (2002). Therapeutic effects of psyllium in type 2 diabetic patients. European Journal of Clinical Nutrition, 56(9), 830–842. https://doi.org/.
Silva, A. P. S., Zotti, C. A., Carvalho, R. F., Corte, R. R., Cônsolo, N. R. B., Silva, S. L., & Leme, P. R. (2019). Effect of replacing antibiotics with functional oils following an abrupt transition to high-concentrate diets on performance and carcass traits of Nellore cattle. Animal Feed Science and Technology, 247, 53–62. https://doi.org/10.1016/j.anifeedsci.2018.10.015.
Singh, B. (2007). Psyllium as therapeutic and drug delivery agent. International Journal of Pharmaceutics, 334(1–2), 1–14.
Thakur, V. K., & Thakur, M. K. (2014). Recent trends in hydrogels based on psyllium polysaccharide: a review. Journal of Cleaner Production, 82, 1–15. https://doi.org/10.1016/j.jclepro.2014.06.066.
Tóth, A., & Halász, K. (2019). Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour. Food Packaging and Shelf Life, 20, 100299. https://doi.org/10.1016/j.fpsl.2019.01.003.
Valenzuela, A. B., Sanhueza, J., & Nieto, S. (2003). Natural antioxidants in functional foods: From food safety to health benefits. Em Grasas y Aceites (Vol. 54, Número 3, p. 295–303). https://doi.org/10.3989/gya.2003.v54.i3.245.
Wahid, A., Mahmoud, S. M. N., Attia, E. Z., Yousef, A.-S., Okasha, A. M. M., & Soliman, H. A. (2020). Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. South African Journal of Botany, 130, 208–214. https://doi.org/10.1016/j.sajb.2020.01.007.
Wildman, R. E. C., Wildman, R., & Wallace, T. C. (2016). Handbook of nutraceuticals and functional foods. Boca Raton.
Zhang, J., Wen, C., Zhang, H., & Duan, Y. (2019). Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. International Journal of Biological Macromolecules, 139, 409–420. https://doi.org/10.1016/j.ijbiomac.2019.08.014.

Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ana Caroline Silva, Melina Aparecida Plastina Cardoso, Ana Carolina Pelaes Vital, Jaísa Casetta, Bianka Rocha Saraiva, Ivanor Nunes do Prado, rodolphoprado@hotmail.com

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.