Psyllium use in various industry segments
DOI:
https://doi.org/10.31533//pubvet.v19n03e1740Keywords:
Functional foods, mucilage, Plantago ovataAbstract
The foods considered functional are those that, when consumed, can bring several health benefits. Within these are the plants of the genus Plantago, which have been widely studied for their benefits to human health, due to their properties as a gelling agent, suspending agent, pharmacological actions, cicatrizing, cholesterol controller, reducer of high blood sugar levels, and widely used as a laxative, due to its mucilage, which is a fibrous material with hydrophilic characteristics. From the plant by grinding the seeds psyllium is obtained, it is water-soluble and widely used in industry as green alternatives to traditional synthetic materials. The following review is based on studies of the different ways of using psyllium with known results, bringing information that can be useful for future research and the development of new products.
References
Anderson, J. W., Allgood, L. D., Turner, J., Oeltgen, P. R., & Daggy, B. P. (1999). Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. The American Journal of Clinical Nutrition, 70(4), 466–473. https://doi.org/10.1093/ajcn/70.4.466.
Basiri, S., Shekarforoush, S. S., Mazkour, S., Modabber, P., & Kordshouli, F. Z. (2020). Evaluating the potential of mucilaginous seed of psyllium (Plantago ovata) as a new lead biosorbent. Bioactive Carbohydrates and Dietary Fibre, 24, 100242. https://doi.org/10.1016/j.bcdf.2020.100242.
Beara, I. N., Lesjak, M. M., Orčić, D. Z., Simin, N. Đ., Četojević-Simin, D. D., Božin, B. N., & Mimica-Dukić, N. M. (2012). Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Science and Technology, 47(1), 64–70. https://doi.org/10.1016/j.lwt.2012.01.001.
Belorio, M. L. S. (2020). Empleo del psyllium para el desarrollo de nuevos productos a base de cereales.
Belorio, M., Marcondes, G., & Gómez, M. (2020). Influence of psyllium versus xanthan gum in starch properties. Food Hydrocolloids, 105, 105843. https://doi.org/10.1016/j.foodhyd.2020.105843.
Board, N. (2003). Plantago ovata Forsk: Cultivation. In: N. Board (Org.), Herbs cultivation and their utilization (p. 218–228). Asia Pacific Business Pres inc.
Das, A. K., Nanda, P. K., Madane, P., Biswas, S., Das, A., Zhang, W., & Lorenzo, J. M. (2020). A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology, 99, 323–336. https://doi.org/10.1016/j.tifs.2020.03.010.
Dhar, M. K., Kaul, S., Sareen, S., & Koul, A. K. (2005). Plantago ovata: genetic diversity, cultivation, utilization and chemistry. Plant Genetic Resources, 3(2), 252–263. https://doi.org/10.1079/pgr200582.
Erdogan, A., Rao, S. S. C., Thiruvaiyaru, D., Lee, Y. Y., Coss Adame, E., Valestin, J., & O’Banion, M. (2016). Randomised clinical trial: mixed soluble/insoluble fibre vs. psyllium for chronic constipation. Alimentary Pharmacology & Therapeutics, 44(1), 35–44. https://doi.org/10.1111/apt.13647.
Filipčev, B., Pojić, M., Šimurina, O., Mišan, A., & Mandić, A. (2021). Psyllium as an improve in gluten-free breads: Effect on volume, crumb texture, moisture binding and staling kinetics. LWT, 151, 112156. https://doi.org/10.1016/j.lwt.2021.112156.
Fischer, M. H., Yu, N., Gray, G. R., Ralph, J., Anderson, L., & Marlett, J. A. (2004). The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydrate Research, 339(11), 2009–2017. https://doi.org/10.1016/j.carres.2004.05.023.
Fradinho, P., Soares, R., Niccolai, A., Sousa, I., & Raymundo, A. (2020). Psyllium husk gel to reinforce structure of gluten-free pasta? LWT, 131, 109787. https://doi.org/10.1016/j.lwt.2020.109787.
Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542–1547. https://doi.org/10.1016/j.foodhyd.2008.10.012.
Guo, Q., Cui, S. W., Wang, Q., & Young, J. C. (2008). Fractionation and physicochemical characterization of psyllium gum. Carbohydrate Polymers, 73(1), 35–43. https://doi.org/10.1016/j.foodhyd.2010.09.027.
Gupta, R. R., Agrawal, C. G., Singh, G. P., & Ghatak, A. (1994). Lipid-lowering efficacy of psyllium hydrophilic mucilloid in non-insulin dependent diabetes mellitus with hyperlipidaemia. The Indian Journal of Medical Research, 100, 237–241.
Han, N., Wang, L., Song, Z., Lin, J., Ye, C., Liu, Z., & Yin, J. (2016). Optimization and antioxidant activity of polysaccharides from Plantago depressa. International Journal of Biological Macromolecules, 93, 644–654.
Jiménez-Colmenero, F., Herrero, A. M., Cofrades, S., & Ruiz-Capillas, C. (2012). Meat and functional foods. In: Y. H. Hui (Org.), Handbook of meat and meat processing (Vol. 1, Número 2, p. 225–248). CRC Press. Taylor Francis Group. https://doi.org/10.1016/j.foodhyd.2011.04.007
Jovanovski, E., Yashpal, S., Komishon, A., Zurbau, A., Blanco Mejia, S., Ho, H. V. T., Li, D., Sievenpiper, J., Duvnjak, L., & Vuksan, V. (2018). Effect of psyllium (Plantago ovata) fiber on LDL cholesterol and alternative lipid targets, non-HDL cholesterol and apolipoprotein B: a systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 108(5), 922–932. https://doi.org/10.1093/ajcn/nqy115.
Kaur, S., & Das, M. (2011). Functional foods: An overview. Food Science and Biotechnology, 20(4), 861. https://doi.org/10.1007/s10068-011-0121-7.
Krystyjan, M., Khachatryan, G., Ciesielski, W., Buksa, K., & Sikora, M. (2017). Preparation and characteristics of mechanical and functional properties of starch/Plantago psyllium seeds mucilage films. Starch‐Stärke, 69(11–12), 1700014.
Kumar, D., Pandey, J., & Kumar, P. (2018). Microwave assisted synthesis of binary grafted psyllium and its utility in anticancer formulation. Carbohydrate Polymers, 179. https://doi.org/10.1016/j.carbpol.2017.09.093.
Kumar, D., Pandey, J., Kumar, P., & Raj, V. (2017). Psyllium mucilage and its use in pharmaceutical field: An overview. Current Synthetic and System Biology, 5(1), 1–7. https://doi.org/10.4172/2332-0737.1000134.
Ladjevardi, Z. S., Gharibzahedi, S. M. T., & Mousavi, M. (2015). Development of a stable low-fat yogurt gel using functionality of psyllium (Plantago ovata Forsk) husk gum. Carbohydrate Polymers, 125, 272–280. https://doi.org/10.1002/star.201700014.
Marlett, J. A., & Fischer, M. H. (2003). The active fraction of psyllium seed husk. Proceedings of the Nutrition Society, 62(1), 207–209. https://doi.org/10.1079/PNS2002201.
McRorie, J. W., Daggy, B. P., Morel, J. G., Diersing, P. S., Miner, P. B., & Robinson, M. (1998). Psyllium is superior to docusate sodium for treatment of chronic constipation. Alimentary Pharmacology and Therapeutics, 12(5), 491.
Mishra, S., Sinha, S., Dey, K. P., & Sen, G. (2014). Synthesis, characterization and applications of polymethylmethacrylate grafted psyllium as flocculant. Carbohydrate Polymers, 99, 462–468. https://doi.org/10.1016/j.carbpol.2013.08.047.
Monge Neto, A. Á., Tomazini, L. F., Mizuta, A. G., Corrêa, R. C. G., Madrona, G. S., de Moraes, F. F., & Peralta, R. M. (2021). Direct microencapsulation of an annatto extract by precipitation of psyllium husk mucilage polysaccharides. Food Hydrocolloids, 112, 106333. https://doi.org/10.1016/j.foodhyd.2020.106333.
Patel, M. K., Tanna, B., Gupta, H., Mishra, A., & Jha, B. (2019). Physicochemical, scavenging and anti-proliferative analyses of polysaccharides extracted from psyllium (Plantago ovata Forssk) husk and seeds. International Journal of Biological Macromolecules, 133, 190–201. https://doi.org/10.1016/j.ijbiomac.2019.04.062.
Patel, M. K., Tanna, B., Mishra, A., & Jha, B. (2018). Physicochemical characterization, antioxidant and anti-proliferative activities of a polysaccharide extracted from psyllium (P. ovata) leaves. International Journal of Biological Macromolecules, 118, 976–987. https://doi.org/10.1016/j.ijbiomac.2018.06.139.
Pejcz, E., Spychaj, R., Wojciechowicz-Budzisz, A., & Gil, Z. (2018). The effect of Plantago seeds and husk on wheat dough and bread functional properties. LWT, 96, 371–377. https://doi.org/10.1016/j.lwt.2018.05.060.
Poddar, S., Agarwal, P. S., Sahi, A. K., Varshney, N., Vajanthri, K. Y., & Mahto, S. K. (2021). Fabrication and characterization of electrospun psyllium husk‐based nanofibers for tissue regeneration. Journal of Applied Polymer Science, 138(24), 50569. https://doi.org/10.1002/app.50569.
Ricklefs-Johnson, K., Johnston, C. S., & Sweazea, K. L. (2017). Ground flaxseed increased nitric oxide levels in adults with type 2 diabetes: A randomized comparative effectiveness study of supplemental flaxseed and psyllium fiber. Obesity Medicine, 5, 16–24. https://doi.org/10.1016/j.obmed.2017.01.002.
Santos, F. G., Aguiar, E. V, Centeno, A. C. L. S., Rosell, C. M., & Capriles, V. D. (2020). Effect of added psyllium and food enzymes on quality attributes and shelf life of chickpea-based gluten-free bread. LWT, 134, 110025. https://doi.org/10.1016/j.lwt.2020.110025.
Santos, F. G., Aguiar, E. V, Rosell, C. M., & Capriles, V. D. (2021). Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread’s quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids, 113, 106487. https://doi.org/10.1016/j.foodhyd.2020.106487.
Sierra, M., García, J. J., Fernández, N., Diez, M. J., & Calle, A. P. (2002). Therapeutic effects of psyllium in type 2 diabetic patients. European Journal of Clinical Nutrition, 56(9), 830–842. https://doi.org/.
Silva, A. P. S., Zotti, C. A., Carvalho, R. F., Corte, R. R., Cônsolo, N. R. B., Silva, S. L., & Leme, P. R. (2019). Effect of replacing antibiotics with functional oils following an abrupt transition to high-concentrate diets on performance and carcass traits of Nellore cattle. Animal Feed Science and Technology, 247, 53–62. https://doi.org/10.1016/j.anifeedsci.2018.10.015.
Singh, B. (2007). Psyllium as therapeutic and drug delivery agent. International Journal of Pharmaceutics, 334(1–2), 1–14.
Thakur, V. K., & Thakur, M. K. (2014). Recent trends in hydrogels based on psyllium polysaccharide: a review. Journal of Cleaner Production, 82, 1–15. https://doi.org/10.1016/j.jclepro.2014.06.066.
Tóth, A., & Halász, K. (2019). Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour. Food Packaging and Shelf Life, 20, 100299. https://doi.org/10.1016/j.fpsl.2019.01.003.
Valenzuela, A. B., Sanhueza, J., & Nieto, S. (2003). Natural antioxidants in functional foods: From food safety to health benefits. Em Grasas y Aceites (Vol. 54, Número 3, p. 295–303). https://doi.org/10.3989/gya.2003.v54.i3.245.
Wahid, A., Mahmoud, S. M. N., Attia, E. Z., Yousef, A.-S., Okasha, A. M. M., & Soliman, H. A. (2020). Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. South African Journal of Botany, 130, 208–214. https://doi.org/10.1016/j.sajb.2020.01.007.
Wildman, R. E. C., Wildman, R., & Wallace, T. C. (2016). Handbook of nutraceuticals and functional foods. Boca Raton.
Zhang, J., Wen, C., Zhang, H., & Duan, Y. (2019). Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. International Journal of Biological Macromolecules, 139, 409–420. https://doi.org/10.1016/j.ijbiomac.2019.08.014.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ana Caroline Silva, Melina Aparecida Plastina Cardoso, Ana Carolina Pelaes Vital, Jaísa Casetta, Bianka Rocha Saraiva, Ivanor Nunes do Prado, rodolphoprado@hotmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.