Cross contamination: Use of cutting boards when handling food in the domestic environment
DOI:
https://doi.org/10.31533/pubvet.v17n4e1380Keywords:
biofilm, foodborne diseases, surfacesAbstract
The objective of this work was to carry out a bibliographical review on the approach to cross contamination in the domestic environment, using cutting boards as a tool used in food handling in domestic households, serving as a vehicle for contamination, and as interest for study, in addition to important aspects related to the safety and handling of food at home. Foodborne diseases are defined as infectious or toxic diseases caused by the consumption of contaminated food or water, and the home is considered a place of origin for these diseases based on the food handled and ingested in the home itself. The main errors during food handling are related to the hygiene conditions in the places and surfaces where these foods are handled, with cross-contamination as the main factor responsible for the transfer of microorganisms from one material or contaminated food to another. Cutting surfaces are utensils widely used in the preparation and manipulation of food, whether raw or ready-to-eat and, as handlers are unaware of adequate measures for hygiene, storage, and conservation of these surfaces, the organic matter and microorganisms present in raw foods can remain adhered to them, serving as a source of constant contamination. The permanence and adhesion of microorganisms can occur on any type of surface with the production of biofilms. Biofilms can be defined as communities of sessile cells, consisting of one or more bacterial species, included in a matrix of extracellular polymers (exopolysaccharides - EPS) adhered to an inert or living surface. Biofilms can contribute to the permanence of microorganisms on cutting boards, which may compromise the microbiological quality of food handled on these surfaces, exposing people to biological risk through the biotransfer of pathogenic microorganisms. Studies show that these pathogenic microorganisms may have some degree of resistance to antibiotics and disinfectants used in disease control and the hygiene of this utensil, and exposure to pathogens associated with their degree of resistance raises concerns for the World Health Organization (WHO), which reveals a worrying scenario for public health.
References
Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., & Cotter, P. D. (2019). Biofilms in Food Processing Environments: Challenges and Opportunities. Https://Doi.Org/10.1146/Annurev-Food-032818-121805, 10, 173–195. https://doi.org/10.1146/ANNUREV-FOOD-032818-121805.
Alves, Â., Santos-Ferreira, N., Magalhães, R., Ferreira, V., & Teixeira, P. (2022). From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control, 137. https://doi.org/10.1016/J.FOODCONT.2022.108959.
Araújo, E. A., de Andrade, N. J., da Silva, L. H. M., de Carvalho, A. F., de Silva, C. A. S., & Ramos, A. M. (2010). Control of microbial adhesion as a strategy for food and bioprocess technology. Food and Bioprocess Technology, 3(3), 321–332. https://doi.org/10.1007/S11947-009-0290-Z/TABLES/2
Aviat, F., Le Bayon, I., Federighi, M., & Montibus, M. (2020). Comparative study of microbiological transfer from four materials used in direct contact with apples. International Journal of Food Microbiology, 333. https://doi.org/10.1016/j.ijfoodmicro.2020.108780.
Beshearse, E., Bruce, B. B., Nane, G. F., Cooke, R. M., Aspinall, W., Hald, T., Crim, S. M., Griffin, P. M., Fullerton, K. E., Collier, S. A., Benedict, K. M., Beach, M. J., Hall, A. J., & Havelaar, A. H. (2021). Attribution of Illnesses Transmitted by Food and Water to Comprehensive Transmission Pathways Using Structured Expert Judgment, United States - Volume 27, Number 1—January 2021 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 27(1), 182–195. https://doi.org/10.3201/EID2701.200316.
Brasil. Ministério da Saúde. Surtos de Doenças de Transmissão Hídrica e Alimentar no Brasil Informe 2022. Disponível em:<https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/surtos-de-doencas-de-transmissao-hidrica-e-alimentar-no-brasil-informe-2022>. Acesso em: 24 mar 2023.
Brasil. Ministério da Saúde. 2023. Doenças de Transmissão Hídrica e Alimentar (DTHA). Disponível em: <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha>. Acesso em: 9 mar. 2023.
Caniça, M., Manageiro, V., Abriouel, H., Moran-Gilad, J., & Franz, C. M. A. P. (2019). Antibiotic resistance in foodborne bacteria. In Trends in Food Science and Technology (Vol. 84, pp. 41–44). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.08.001
Cardoso, M. J., Ferreira, V., Truninger, M., Maia, R., & Teixeira, P. (2021a). Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. International Journal of Food Microbiology, 338. https://doi.org/10.1016/j.ijfoodmicro.2020.108984
Carrasco, E., Morales-Rueda, A., & García-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: A review. Food Research International, 45(2), 545–556. https://doi.org/10.1016/J.FOODRES.2011.11.004
Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2014, 18(4), 2014. https://doi.org/10.3390/IJERPH18042014
Cogan, T. A., Slader, J., Bloomfield, S. F., & Humphrey, T. J. (2002a). Achieving hygiene in the domestic kitchen: the effectiveness of commonly used cleaning procedures. Journal of Applied Microbiology, 92(5), 885–892. https://doi.org/10.1046/J.1365-2672.2002.01598.X.
Da Costa, P. M., Loureiro, L., & Matos, A. J. F. (2013). Transfer of Multidrug-Resistant Bacteria Between Intermingled Ecological Niches: The Interface Between Humans, Animals and the Environment. International Journal of Environmental Research and Public Health 2013, Vol. 10, Pages 278-294, 10(1), 278–294. https://doi.org/10.3390/IJERPH10010278.
Dantas, S. T. A., Rossi, B. F., Bonsaglia, E. C. R., Castilho, I. G., Hernandes, R. T., Fernandes, A., & Rall, V. L. M. (2018). Cross-Contamination and Biofilm Formation by Salmonella enterica Serovar Enteritidis on Various Cutting Boards. Foodborne Pathogens and Disease, 15(2), 81–85. https://doi.org/10.1089/fpd.2017.2341.
De Been, M., Lanza, V. * F., De Toro, M., Scharringa, J., Dohmen, W., Du, Y., Hu, J., Lei, Y., Li, N., Tooming-Klunderud, A., Heederik, D. J. J., Fluit, A. C., Bonten, M. J. M., Willems, R. J. L., De La Cruz, F., & Van Schaik, W. (2014). Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages. PLoS Genet, 10(12), 1004776. https://doi.org/10.1371/journal.pgen.1004776.
De Jong, A. E. I., Verhoeff-Bakkenes, L., Nauta, M. J., & De Jonge, R. (2008). Cross‐contamination in the kitchen: effect of hygiene measures. Journal of Applied Microbiology, 105(2), 615–624. https://doi.org/10.1111/J.1365-2672.2008.03778.X.
DeVere, E., & Purchase, D. (2007). Effectiveness of domestic antibacterial products in decontaminating food contact surfaces. Food Microbiology, 24(4), 425–430. https://doi.org/10.1016/J.FM.2006.07.013
Dhowlaghar, N., Bansal, M., Schilling, M. W., & Nannapaneni, R. (2018). Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus. Food Microbiology, 74, 143–150. https://doi.org/10.1016/J.FM.2018.03.013.
Djebbi-Simmons, D., Xu, W., Janes, M., & King, J. (2019). Survival and inactivation of Salmonella enterica serovar Typhimurium on food contact surfaces during log, stationary and long-term stationary phases. Food Microbiology, 84. https://doi.org/10.1016/J.FM.2019.103272.
Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces - Volume 8, Number 9—September 2002 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/EID0809.020063.
Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., & Langsruda, S. (2017). Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces. Applied and Environmental Microbiology, 83(17). https://doi.org/10.1128/AEM.01046-17
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. In Nature Reviews Microbiology (Vol. 8, Issue 9, pp. 623–633). https://doi.org/10.1038/nrmicro2415.
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. In Nature Reviews Microbiology (Vol. 14, Issue 9, pp. 563–575). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.94.
Gallo, M., Ferrara, L., Calogero, A., Montesano, D., & Naviglio, D. (2020). Relationships between food and diseases: What to know to ensure food safety. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109414.
Gomes, L. C., Silva, L. N., Simões, M., Melo, L. F., & Mergulhão, F. J. (2015). Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Journal of Biomedical Materials Research Part A, 103(4), 1414–1423. https://doi.org/10.1002/JBM.A.35277.
Gorman, R., Bloomfield, S., & Adley, C. C. (2002). A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. www.elsevier.com/locate/ijfoodmicro.
Haysom, I. W., & Sharp, A. K. (2005). Bacterial contamination of domestic kitchens over a 24-hour period. British Food Journal, 107(7), 453–466. https://doi.org/10.1108/00070700510606873.
Heacock-Kang, Y., Sun, Z., Zarzycki-Siek, J., McMillan, I. A., Norris, M. H., Bluhm, A. P., Cabanas, D., Fogen, D., Vo, H., Donachie, S. P., Borlee, B. R., Sibley, C. D., Lewenza, S., Schurr, M. J., Schweizer, H. P., & Hoang, T. T. (2017). Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture. Molecular Microbiology, 106(6), 976–985. https://doi.org/10.1111/MMI.13863.
Jindal, S., Anand, S., Metzger, L., & Amamcharla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101(4), 2921–2926. https://doi.org/10.3168/JDS.2017-14028.
Koch, B. J., Hungate, B. A., & Price, L. B. (2017). Food-animal production and the spread of antibiotic resistance: the role of ecology. In Frontiers in Ecology and the Environment (Vol. 15, Issue 6, pp. 309–318). Wiley Blackwell. https://doi.org/10.1002/fee.1505.
Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307(8), 481–489. https://doi.org/10.1016/J.IJMM.2017.09.016.
Kusumaningrum, H. D., Paltinaite, R., Koomen, A. J., Hazeleger, W. C., Rombouts, F. M., & Beumer, R. R. (2003). Tolerance of Salmonella Enteritidis and Staphylococcus aureus to Surface Cleaning and Household Bleach. Journal of Food Protection, 66(12), 2289–2295. https://doi.org/10.4315/0362-028X-66.12.2289.
Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003a). Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. https://doi.org/10.1016/S0168-1605(02)00540-8.
Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003b). Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. International Journal of Food Microbiology, 85(3), 227–236. https://doi.org/10.1016/S0168-1605(02)00540-8.
Lavilla Lerma, L., Benomar, N., Gálvez, A., & Abriouel, H. (2013). Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. International Journal of Food Microbiology, 161(2), 97–106. https://doi.org/10.1016/j.ijfoodmicro.2012.11.028.
Liao, J., Schurr, M. J., & Sauera, K. (2013). The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 195(15), 3352–3363. https://doi.org/10.1128/JB.00318-13.
Lineback, C. B., Nkemngong, C. A., Wu, S. T., Li, X., Teska, P. J., & Oliver, H. F. (2018). Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance and Infection Control, 7(1). https://doi.org/10.1186/s13756-018-0447-5.
Manafi, L., Aliakbarlu, J., & Dastmalchi Saei, H. (2020). Antibiotic resistance and biofilm formation ability of Salmonella serotypes isolated from beef, mutton, and meat contact surfaces at retail. https://doi.org/10.1111/1750-3841.15335.
Medrano-Félix, A., Martínez, C., Castro-Del Campo, N., León-Félix, J., Peraza-Garay, F., Gerba, C. P., & Chaidez, C. (2011). Impact of prescribed cleaning and disinfectant use on microbial contamination in the home. Journal of Applied Microbiology, 110(2), 463–471. https://doi.org/10.1111/J.1365-2672.2010.04901.X.
Menini, A., Mascarello, G., Giaretta, M., Brombin, A., Marcolin, S., Personeni, F., Pinto, A., & Crovato, S. (2022). The Critical Role of Consumers in the Prevention of Foodborne Diseases: An Ethnographic Study of Italian Families. Foods, 11(7). https://doi.org/10.3390/foods11071006
Moore, G., Blair, I. S., & Mcdowell, D. A. (2007). Recovery and Transfer of Salmonella Typhimurium from Four Different Domestic Food Contact Surfaces. In Journal of Food Protection (Vol. 70, Issue 10).
Møretrø, T., Heir, E., Nesse, L. L., Vestby, L. K., & Langsrud, S. (2012). Control of Salmonella in food related environments by chemical disinfection. Food Research International, 45(2), 532–544. https://doi.org/10.1016/J.FOODRES.2011.02.002.
Møretrø, T., Vestby, L. K., Nesse, L. L., Storheim, S. E., Kotlarz, K., & Langsrud, S. (2009). Evaluation of efficacy of disinfectants against Salmonella from the feed industry. Journal of Applied Microbiology, 106(3), 1005–1012. https://doi.org/10.1111/j.1365-2672.2008.04067.x.
Okpala, C. O. R., & Ezeonu, I. M. (2019). Food Hygiene/Microbiological Safety in the typical Household Kitchen: Some basic ‘must knows’ for the general public. Journal of Pure and Applied Microbiology, 13(2), 697–713. https://doi.org/10.22207/JPAM.13.2.06.
OMS. Organização Mundial da Saúde. Foodborne diseases. Disponível em: <https://www.who.int/health-topics/foodborne-diseases#tab=tab_1>. Acesso em: 24 mar. 2023. (a)
OMS. Organização Mundial da Saúde. Foodborne diseases: impacts. Disponível em: <https://www.who.int/health-topics/foodborne-diseases#tab=tab_2>. Acesso em: 24 mar. 2023. (b)
Possas, A., Carrasco, E., García-Gimeno, R. M., & Valero, A. (2017a). Models of microbial cross-contamination dynamics. In Current Opinion in Food Science (Vol. 14, pp. 43–49). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2017.01.006.
Prüss-Üstün, A, Wolf, J., Corvalán, C., Bos, R., Neira, M. 2016. Preventing disease through healthy environment : a global assessment of the burden of disease from environmental risks. World Health Organization, Switzerland.
Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6/asset/images/large/figure15.jpeg.
Ravishankar, S., Zhu, L., & Jaroni, D. (2010a). Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiology, 27(6), 791–794. https://doi.org/10.1016/j.fm.2010.04.011.
Ravishankar, S., Zhu, L., & Jaroni, D. (2010b). Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiology, 27(6), 791–794. https://doi.org/10.1016/J.FM.2010.04.011.
Rayner, J., Veeh, R., & Flood, J. (2004). Prevalence of microbial biofilms on selected fresh produce and household surfaces. International Journal of Food Microbiology, 95(1), 29–39. https://doi.org/10.1016/j.ijfoodmicro.2004.01.019.
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heure, O. E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J. M., … Vila, J. (2015). The global threat of antimicrobial resistance: Science for intervention. New Microbes and New Infections, 6, 22–29. https://doi.org/10.1016/J.NMNI.2015.02.007.
Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. In Nature Reviews Microbiology (Vol. 18, Issue 10, pp. 571–586). Nature Research. https://doi.org/10.1038/s41579-020-0385-0.
Rutala, W., Barbee, S., Aguiar, N., Sobsey, M., & Weber, D. 2000. Antimicrobial Activity of Home Disinfectants and Natural Products Against Potential Human Pathogens. Infection Control & Hospital Epidemiology, 21(1), 33-38. http://www.jstor.org/stable/10.1086/501694
Salahshouri, A., Soheelabadi, A. S., Farsi, M., & Gheibipour, H. (2020). Investigation of the Outbreak of Food- and Water-borne Diseases in Khansar, Isfahan in 2018. Archives of Hygiene Sciences, 9(4), 325–330. https://doi.org/10.52547/ARCHHYGSCI.9.4.325.
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V, Widdowson, M.-A., & Roy, S. L. (2011). Foodborne Illness Acquired in the United States-Major Pathogens. Emerging Infectious Diseases Journal-CDC, 17(1). https://wwwnc.cdc.gov/eid/article/17/1/P1-1101_article.
Sekoai, P. T., Feng, S., Zhou, W., Ngan, W. Y., Pu, Y., Yao, Y., Pan, J., & Habimana, O. (2020). Insights into the microbiological safety of wooden cutting boards used for meat processing in Hong Kong’s wet markets: A focus on food-contact surfaces, cross-contamination and the efficacy of traditional hygiene practices. Microorganisms, 8(4). https://doi.org/10.3390/microorganisms8040579.
Soares, V. M., Pereira, J. G., Viana, C., Izidoro, T. B., Bersot, L. dos S., & Pinto, J. P. de A. N. (2012). Transfer of Salmonella Enteritidis to four types of surfaces after cleaning procedures and cross-contamination to tomatoes. Food Microbiology, 30(2), 453–456. https://doi.org/10.1016/j.fm.2011.12.028.
Tang, L., Pillai, S., Revsbech, N. P., Schramm, A., Bischoff, C., & Meyer, R. L. (2011). Biofilm retention on surfaces with variable roughness and hydrophobicity. Biofouling, 27(1), 111–121. https://doi.org/10.1080/08927014.2010.544848.
Thanner, S., Drissner, D., & Walsh, F. (2016). Antimicrobial resistance in agriculture. MBio, 7(2). https://doi.org/10.1128/MBIO.02227-15/FORMAT/EPUB.
Tomičić, R., Tomičić, Z., Thaler, N., Humar, M., & Raspor, P. (2020). Factors influencing adhesion of bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and yeast Pichia membranifaciens to wooden surfaces. Wood Science and Technology, 54(6), 1663–1676. https://doi.org/10.1007/s00226-020-01222-0.
Van Asselt, E. D., De Jong, A. E. I., De Jonge, R., & Nauta, M. J. (2008). Cross‐contamination in the kitchen: estimation of transfer rates for cutting boards, hands and knives. Journal of Applied Microbiology, 105(5), 1392–1401. https://doi.org/10.1111/J.1365-2672.2008.03875.X
Veluz, G. A., Pitchiah, S., & Alvarado, C. Z. (2012). Attachment ofSalmonella serovars andListeria monocytogenes to stainless steel and plastic conveyor belts. Poultry Science, 91(8), 2004–2010. https://doi.org/10.3382/PS.2011-01689.
Wang, R., Kalchayanand, N., & Bono, J. L. (2015). Sequence of Colonization Determines the Composition of Mixed Biofilms by O157:H7 and O111:H8 Strains. Journal of Food Protection, 78(8), 1554–1559. https://doi.org/10.4315/0362-028X.JFP-15-009.
Williamson, K. S., Richards, L. A., Perez-Osorio, A. C., Pitts, B., McInnerney, K., Stewart, P. S., & Franklin, M. J. (2012). Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. Journal of Bacteriology, 194(8), 2062–2073. https://doi.org/10.1128/JB.00022-12.
Yuan, L., Sadiq, F. A., Burmølle, M., Liu, T., & He, G. (2018). Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. Journal of Food Protection, 81(10), 1651–1660. https://doi.org/10.4315/0362-028X.JFP-18-094.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Janaina Prieto de Oliveira Prieto de Oliveira, Dionice Capistrano da Silva, Juliano Gonçalves Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.