Contaminação cruzada: Uso de tábuas de corte na manipulação de alimentos no ambiente doméstico

Autores

DOI:

https://doi.org/10.31533/pubvet.v17n4e1380

Palavras-chave:

biofilme, doenças trasmitidas por água e alimentos, superfícies

Resumo

O objetivo deste trabalho foi realizar uma revisão bibliográfica na abordagem em contaminação cruzada no ambiente doméstico, tendo as tábuas de corte como um utensílio utilizado na manipulação de alimentos nas residências domésticas, servindo como um veículo de contaminação e de interesse de estudo, além de aspectos importantes relacionados à inocuidade e manipulação de alimentos no âmbito domiciliar. As doenças transmitidas por água e alimentos (DTHA) são definidas como enfermidades infecciosas ou tóxicas causadas pelo consumo de alimentos ou água contaminados. O domicílio é considerado um local de origem destas doenças, a partir de alimentos manipulados e ingeridos nas próprias residências. As principais falhas durante a manipulação de alimentos estão relacionadas às condições de higiene nos locais e superfícies onde esses alimentos são manipulados. A contaminação cruzada é responsável pela transferência de microrganismos de um material ou alimento contaminado para outro. As superfícies de cortes são utensílios amplamente utilizados no preparo e manipulação de alimentos, sejam crus ou prontos para o consumo. Conforme os manipuladores desconhecem as medidas adequadas de higiene, armazenamento e conservação destas superfícies a matéria orgânica e os microrganismos presentes em alimentos crus podem permanecer aderidos junto à essas, servindo como fonte de contaminação constante. A permanência e adesão de microrganismos pode ocorrer em qualquer tipo de superfície com produção de biofilmes. Os biofilmes podem ser definidos como comunidades de células sésseis, constituídas por uma ou várias espécies bacterianas, inclusas em uma matriz de polímeros extracelulares (exopolissacarídeos – EPS) aderidos em uma superfície inerte ou viva. Os biofilmes podem contribuir para a permanência de microrganismos em tábuas de corte, podendo comprometer a qualidade microbiológica de alimentos manipulados nestas superfícies, expondo as pessoas ao risco biológico, pela biotransferência de microrganismos patogênicos. Estudos demonstram que estes microrganismos patogênicos podem apresentar algum grau de resistência aos antibióticos e desinfetantes, utilizados no controle de doenças e higienização desse utensílio. A exposição a agentes patogênicos associado ao grau de resistência dos mesmos desperta preocupações a Organização Mundial da Saúde (OMS), o que revela um cenário preocupante para a saúde pública.

Referências

Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., & Cotter, P. D. (2019). Biofilms in Food Processing Environments: Challenges and Opportunities. Https://Doi.Org/10.1146/Annurev-Food-032818-121805, 10, 173–195. https://doi.org/10.1146/ANNUREV-FOOD-032818-121805.

Alves, Â., Santos-Ferreira, N., Magalhães, R., Ferreira, V., & Teixeira, P. (2022). From chicken to salad: Cooking salt as a potential vehicle of Salmonella spp. and Listeria monocytogenes cross-contamination. Food Control, 137. https://doi.org/10.1016/J.FOODCONT.2022.108959.

Araújo, E. A., de Andrade, N. J., da Silva, L. H. M., de Carvalho, A. F., de Silva, C. A. S., & Ramos, A. M. (2010). Control of microbial adhesion as a strategy for food and bioprocess technology. Food and Bioprocess Technology, 3(3), 321–332. https://doi.org/10.1007/S11947-009-0290-Z/TABLES/2

Aviat, F., Le Bayon, I., Federighi, M., & Montibus, M. (2020). Comparative study of microbiological transfer from four materials used in direct contact with apples. International Journal of Food Microbiology, 333. https://doi.org/10.1016/j.ijfoodmicro.2020.108780.

Beshearse, E., Bruce, B. B., Nane, G. F., Cooke, R. M., Aspinall, W., Hald, T., Crim, S. M., Griffin, P. M., Fullerton, K. E., Collier, S. A., Benedict, K. M., Beach, M. J., Hall, A. J., & Havelaar, A. H. (2021). Attribution of Illnesses Transmitted by Food and Water to Comprehensive Transmission Pathways Using Structured Expert Judgment, United States - Volume 27, Number 1—January 2021 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 27(1), 182–195. https://doi.org/10.3201/EID2701.200316.

Brasil. Ministério da Saúde. Surtos de Doenças de Transmissão Hídrica e Alimentar no Brasil Informe 2022. Disponível em:<https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/surtos-de-doencas-de-transmissao-hidrica-e-alimentar-no-brasil-informe-2022>. Acesso em: 24 mar 2023.

Brasil. Ministério da Saúde. 2023. Doenças de Transmissão Hídrica e Alimentar (DTHA). Disponível em: <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha>. Acesso em: 9 mar. 2023.

Caniça, M., Manageiro, V., Abriouel, H., Moran-Gilad, J., & Franz, C. M. A. P. (2019). Antibiotic resistance in foodborne bacteria. In Trends in Food Science and Technology (Vol. 84, pp. 41–44). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.08.001

Cardoso, M. J., Ferreira, V., Truninger, M., Maia, R., & Teixeira, P. (2021a). Cross-contamination events of Campylobacter spp. in domestic kitchens associated with consumer handling practices of raw poultry. International Journal of Food Microbiology, 338. https://doi.org/10.1016/j.ijfoodmicro.2020.108984

Carrasco, E., Morales-Rueda, A., & García-Gimeno, R. M. (2012). Cross-contamination and recontamination by Salmonella in foods: A review. Food Research International, 45(2), 545–556. https://doi.org/10.1016/J.FOODRES.2011.11.004

Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2014, 18(4), 2014. https://doi.org/10.3390/IJERPH18042014

Cogan, T. A., Slader, J., Bloomfield, S. F., & Humphrey, T. J. (2002a). Achieving hygiene in the domestic kitchen: the effectiveness of commonly used cleaning procedures. Journal of Applied Microbiology, 92(5), 885–892. https://doi.org/10.1046/J.1365-2672.2002.01598.X.

Da Costa, P. M., Loureiro, L., & Matos, A. J. F. (2013). Transfer of Multidrug-Resistant Bacteria Between Intermingled Ecological Niches: The Interface Between Humans, Animals and the Environment. International Journal of Environmental Research and Public Health 2013, Vol. 10, Pages 278-294, 10(1), 278–294. https://doi.org/10.3390/IJERPH10010278.

Dantas, S. T. A., Rossi, B. F., Bonsaglia, E. C. R., Castilho, I. G., Hernandes, R. T., Fernandes, A., & Rall, V. L. M. (2018). Cross-Contamination and Biofilm Formation by Salmonella enterica Serovar Enteritidis on Various Cutting Boards. Foodborne Pathogens and Disease, 15(2), 81–85. https://doi.org/10.1089/fpd.2017.2341.

De Been, M., Lanza, V. * F., De Toro, M., Scharringa, J., Dohmen, W., Du, Y., Hu, J., Lei, Y., Li, N., Tooming-Klunderud, A., Heederik, D. J. J., Fluit, A. C., Bonten, M. J. M., Willems, R. J. L., De La Cruz, F., & Van Schaik, W. (2014). Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages. PLoS Genet, 10(12), 1004776. https://doi.org/10.1371/journal.pgen.1004776.

De Jong, A. E. I., Verhoeff-Bakkenes, L., Nauta, M. J., & De Jonge, R. (2008). Cross‐contamination in the kitchen: effect of hygiene measures. Journal of Applied Microbiology, 105(2), 615–624. https://doi.org/10.1111/J.1365-2672.2008.03778.X.

DeVere, E., & Purchase, D. (2007). Effectiveness of domestic antibacterial products in decontaminating food contact surfaces. Food Microbiology, 24(4), 425–430. https://doi.org/10.1016/J.FM.2006.07.013

Dhowlaghar, N., Bansal, M., Schilling, M. W., & Nannapaneni, R. (2018). Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus. Food Microbiology, 74, 143–150. https://doi.org/10.1016/J.FM.2018.03.013.

Djebbi-Simmons, D., Xu, W., Janes, M., & King, J. (2019). Survival and inactivation of Salmonella enterica serovar Typhimurium on food contact surfaces during log, stationary and long-term stationary phases. Food Microbiology, 84. https://doi.org/10.1016/J.FM.2019.103272.

Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces - Volume 8, Number 9—September 2002 - Emerging Infectious Diseases journal - CDC. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/EID0809.020063.

Fagerlund, A., Møretrø, T., Heir, E., Briandet, R., & Langsruda, S. (2017). Cleaning and Disinfection of Biofilms Composed of Listeria monocytogenes and Background Microbiota from Meat Processing Surfaces. Applied and Environmental Microbiology, 83(17). https://doi.org/10.1128/AEM.01046-17

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. In Nature Reviews Microbiology (Vol. 8, Issue 9, pp. 623–633). https://doi.org/10.1038/nrmicro2415.

Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. In Nature Reviews Microbiology (Vol. 14, Issue 9, pp. 563–575). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2016.94.

Gallo, M., Ferrara, L., Calogero, A., Montesano, D., & Naviglio, D. (2020). Relationships between food and diseases: What to know to ensure food safety. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109414.

Gomes, L. C., Silva, L. N., Simões, M., Melo, L. F., & Mergulhão, F. J. (2015). Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials. Journal of Biomedical Materials Research Part A, 103(4), 1414–1423. https://doi.org/10.1002/JBM.A.35277.

Gorman, R., Bloomfield, S., & Adley, C. C. (2002). A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. www.elsevier.com/locate/ijfoodmicro.

Haysom, I. W., & Sharp, A. K. (2005). Bacterial contamination of domestic kitchens over a 24-hour period. British Food Journal, 107(7), 453–466. https://doi.org/10.1108/00070700510606873.

Heacock-Kang, Y., Sun, Z., Zarzycki-Siek, J., McMillan, I. A., Norris, M. H., Bluhm, A. P., Cabanas, D., Fogen, D., Vo, H., Donachie, S. P., Borlee, B. R., Sibley, C. D., Lewenza, S., Schurr, M. J., Schweizer, H. P., & Hoang, T. T. (2017). Spatial transcriptomes within the Pseudomonas aeruginosa biofilm architecture. Molecular Microbiology, 106(6), 976–985. https://doi.org/10.1111/MMI.13863.

Jindal, S., Anand, S., Metzger, L., & Amamcharla, J. (2018). Short communication: A comparison of biofilm development on stainless steel and modified-surface plate heat exchangers during a 17-h milk pasteurization run. Journal of Dairy Science, 101(4), 2921–2926. https://doi.org/10.3168/JDS.2017-14028.

Koch, B. J., Hungate, B. A., & Price, L. B. (2017). Food-animal production and the spread of antibiotic resistance: the role of ecology. In Frontiers in Ecology and the Environment (Vol. 15, Issue 6, pp. 309–318). Wiley Blackwell. https://doi.org/10.1002/fee.1505.

Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., & Hasnain, S. E. (2017). Biofilms: Survival and defense strategy for pathogens. International Journal of Medical Microbiology, 307(8), 481–489. https://doi.org/10.1016/J.IJMM.2017.09.016.

Kusumaningrum, H. D., Paltinaite, R., Koomen, A. J., Hazeleger, W. C., Rombouts, F. M., & Beumer, R. R. (2003). Tolerance of Salmonella Enteritidis and Staphylococcus aureus to Surface Cleaning and Household Bleach. Journal of Food Protection, 66(12), 2289–2295. https://doi.org/10.4315/0362-028X-66.12.2289.

Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003a). Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. https://doi.org/10.1016/S0168-1605(02)00540-8.

Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. (2003b). Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. International Journal of Food Microbiology, 85(3), 227–236. https://doi.org/10.1016/S0168-1605(02)00540-8.

Lavilla Lerma, L., Benomar, N., Gálvez, A., & Abriouel, H. (2013). Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production. International Journal of Food Microbiology, 161(2), 97–106. https://doi.org/10.1016/j.ijfoodmicro.2012.11.028.

Liao, J., Schurr, M. J., & Sauera, K. (2013). The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 195(15), 3352–3363. https://doi.org/10.1128/JB.00318-13.

Lineback, C. B., Nkemngong, C. A., Wu, S. T., Li, X., Teska, P. J., & Oliver, H. F. (2018). Hydrogen peroxide and sodium hypochlorite disinfectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance and Infection Control, 7(1). https://doi.org/10.1186/s13756-018-0447-5.

Manafi, L., Aliakbarlu, J., & Dastmalchi Saei, H. (2020). Antibiotic resistance and biofilm formation ability of Salmonella serotypes isolated from beef, mutton, and meat contact surfaces at retail. https://doi.org/10.1111/1750-3841.15335.

Medrano-Félix, A., Martínez, C., Castro-Del Campo, N., León-Félix, J., Peraza-Garay, F., Gerba, C. P., & Chaidez, C. (2011). Impact of prescribed cleaning and disinfectant use on microbial contamination in the home. Journal of Applied Microbiology, 110(2), 463–471. https://doi.org/10.1111/J.1365-2672.2010.04901.X.

Menini, A., Mascarello, G., Giaretta, M., Brombin, A., Marcolin, S., Personeni, F., Pinto, A., & Crovato, S. (2022). The Critical Role of Consumers in the Prevention of Foodborne Diseases: An Ethnographic Study of Italian Families. Foods, 11(7). https://doi.org/10.3390/foods11071006

Moore, G., Blair, I. S., & Mcdowell, D. A. (2007). Recovery and Transfer of Salmonella Typhimurium from Four Different Domestic Food Contact Surfaces. In Journal of Food Protection (Vol. 70, Issue 10).

Møretrø, T., Heir, E., Nesse, L. L., Vestby, L. K., & Langsrud, S. (2012). Control of Salmonella in food related environments by chemical disinfection. Food Research International, 45(2), 532–544. https://doi.org/10.1016/J.FOODRES.2011.02.002.

Møretrø, T., Vestby, L. K., Nesse, L. L., Storheim, S. E., Kotlarz, K., & Langsrud, S. (2009). Evaluation of efficacy of disinfectants against Salmonella from the feed industry. Journal of Applied Microbiology, 106(3), 1005–1012. https://doi.org/10.1111/j.1365-2672.2008.04067.x.

Okpala, C. O. R., & Ezeonu, I. M. (2019). Food Hygiene/Microbiological Safety in the typical Household Kitchen: Some basic ‘must knows’ for the general public. Journal of Pure and Applied Microbiology, 13(2), 697–713. https://doi.org/10.22207/JPAM.13.2.06.

OMS. Organização Mundial da Saúde. Foodborne diseases. Disponível em: <https://www.who.int/health-topics/foodborne-diseases#tab=tab_1>. Acesso em: 24 mar. 2023. (a)

OMS. Organização Mundial da Saúde. Foodborne diseases: impacts. Disponível em: <https://www.who.int/health-topics/foodborne-diseases#tab=tab_2>. Acesso em: 24 mar. 2023. (b)

Possas, A., Carrasco, E., García-Gimeno, R. M., & Valero, A. (2017a). Models of microbial cross-contamination dynamics. In Current Opinion in Food Science (Vol. 14, pp. 43–49). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2017.01.006.

Prüss-Üstün, A, Wolf, J., Corvalán, C., Bos, R., Neira, M. 2016. Preventing disease through healthy environment : a global assessment of the burden of disease from environmental risks. World Health Organization, Switzerland.

Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.15.6/asset/images/large/figure15.jpeg.

Ravishankar, S., Zhu, L., & Jaroni, D. (2010a). Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiology, 27(6), 791–794. https://doi.org/10.1016/j.fm.2010.04.011.

Ravishankar, S., Zhu, L., & Jaroni, D. (2010b). Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiology, 27(6), 791–794. https://doi.org/10.1016/J.FM.2010.04.011.

Rayner, J., Veeh, R., & Flood, J. (2004). Prevalence of microbial biofilms on selected fresh produce and household surfaces. International Journal of Food Microbiology, 95(1), 29–39. https://doi.org/10.1016/j.ijfoodmicro.2004.01.019.

Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Cohen, J., Findlay, D., Gyssens, I., Heure, O. E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J. M., … Vila, J. (2015). The global threat of antimicrobial resistance: Science for intervention. New Microbes and New Infections, 6, 22–29. https://doi.org/10.1016/J.NMNI.2015.02.007.

Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. In Nature Reviews Microbiology (Vol. 18, Issue 10, pp. 571–586). Nature Research. https://doi.org/10.1038/s41579-020-0385-0.

Rutala, W., Barbee, S., Aguiar, N., Sobsey, M., & Weber, D. 2000. Antimicrobial Activity of Home Disinfectants and Natural Products Against Potential Human Pathogens. Infection Control & Hospital Epidemiology, 21(1), 33-38. http://www.jstor.org/stable/10.1086/501694

Salahshouri, A., Soheelabadi, A. S., Farsi, M., & Gheibipour, H. (2020). Investigation of the Outbreak of Food- and Water-borne Diseases in Khansar, Isfahan in 2018. Archives of Hygiene Sciences, 9(4), 325–330. https://doi.org/10.52547/ARCHHYGSCI.9.4.325.

Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V, Widdowson, M.-A., & Roy, S. L. (2011). Foodborne Illness Acquired in the United States-Major Pathogens. Emerging Infectious Diseases Journal-CDC, 17(1). https://wwwnc.cdc.gov/eid/article/17/1/P1-1101_article.

Sekoai, P. T., Feng, S., Zhou, W., Ngan, W. Y., Pu, Y., Yao, Y., Pan, J., & Habimana, O. (2020). Insights into the microbiological safety of wooden cutting boards used for meat processing in Hong Kong’s wet markets: A focus on food-contact surfaces, cross-contamination and the efficacy of traditional hygiene practices. Microorganisms, 8(4). https://doi.org/10.3390/microorganisms8040579.

Soares, V. M., Pereira, J. G., Viana, C., Izidoro, T. B., Bersot, L. dos S., & Pinto, J. P. de A. N. (2012). Transfer of Salmonella Enteritidis to four types of surfaces after cleaning procedures and cross-contamination to tomatoes. Food Microbiology, 30(2), 453–456. https://doi.org/10.1016/j.fm.2011.12.028.

Tang, L., Pillai, S., Revsbech, N. P., Schramm, A., Bischoff, C., & Meyer, R. L. (2011). Biofilm retention on surfaces with variable roughness and hydrophobicity. Biofouling, 27(1), 111–121. https://doi.org/10.1080/08927014.2010.544848.

Thanner, S., Drissner, D., & Walsh, F. (2016). Antimicrobial resistance in agriculture. MBio, 7(2). https://doi.org/10.1128/MBIO.02227-15/FORMAT/EPUB.

Tomičić, R., Tomičić, Z., Thaler, N., Humar, M., & Raspor, P. (2020). Factors influencing adhesion of bacteria Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and yeast Pichia membranifaciens to wooden surfaces. Wood Science and Technology, 54(6), 1663–1676. https://doi.org/10.1007/s00226-020-01222-0.

Van Asselt, E. D., De Jong, A. E. I., De Jonge, R., & Nauta, M. J. (2008). Cross‐contamination in the kitchen: estimation of transfer rates for cutting boards, hands and knives. Journal of Applied Microbiology, 105(5), 1392–1401. https://doi.org/10.1111/J.1365-2672.2008.03875.X

Veluz, G. A., Pitchiah, S., & Alvarado, C. Z. (2012). Attachment ofSalmonella serovars andListeria monocytogenes to stainless steel and plastic conveyor belts. Poultry Science, 91(8), 2004–2010. https://doi.org/10.3382/PS.2011-01689.

Wang, R., Kalchayanand, N., & Bono, J. L. (2015). Sequence of Colonization Determines the Composition of Mixed Biofilms by O157:H7 and O111:H8 Strains. Journal of Food Protection, 78(8), 1554–1559. https://doi.org/10.4315/0362-028X.JFP-15-009.

Williamson, K. S., Richards, L. A., Perez-Osorio, A. C., Pitts, B., McInnerney, K., Stewart, P. S., & Franklin, M. J. (2012). Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. Journal of Bacteriology, 194(8), 2062–2073. https://doi.org/10.1128/JB.00022-12.

Yuan, L., Sadiq, F. A., Burmølle, M., Liu, T., & He, G. (2018). Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. Journal of Food Protection, 81(10), 1651–1660. https://doi.org/10.4315/0362-028X.JFP-18-094.

Downloads

Publicado

26-04-2023

Edição

Seção

Saúde pública

Como Citar

Contaminação cruzada: Uso de tábuas de corte na manipulação de alimentos no ambiente doméstico. (2023). Pubvet, 17(04), e1380. https://doi.org/10.31533/pubvet.v17n4e1380