Relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico: Revisão
DOI:
https://doi.org/10.31533/pubvet.v17n11e1484Palavras-chave:
alimentos, nutrientes, produção animalResumo
O ovo de uma galinha contém substâncias promotoras da saúde e preventivas de doenças, tornando-o um alimento funcional, além de ser importante reserva de proteínas, lipídeos, vitaminas e minerais. Dessa forma, objetivou-se, com este trabalho, discutir a relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico. Dentre os principais nutrientes presentes no ovo que podem exercer função imunomoduladora, e contribuir com a atividade do sistema imunológico, em específico na prevenção e combate de doenças, podem-se citar as vitaminas lipossolúveis A, D e E, os microminerais: cobre (Cu), selênio (Se) e zinco (Zn), e os ácidos graxos da família ômega-3 (AGs ω-3). A partir da presença desses componentes nutricionais, o consumo do ovo irá contribuir na formação, desenvolvimento e funcionamento do sistema imunológico, em decorrência de sua composição nutricional poder auxiliar nas ações de defesa do organismo humano, e conseqüentemente na prevenção e combate de doenças. Nesse sentido, a ingestão dos nutrientes funcionais presentes no ovo, alimento de baixo custo e de fácil aquisição, irá proporcionar uma melhor saúde da população, a partir de uma maior realização de atividades biológicas, que possam propiciar uma estrutura corporal mais forte e resistente.
Referências
Adorini, L., & Penna, G. (2008). Control of autoimmune diseases by the vitamin D endocrine system. Nature Clinical Practice Rheumatology, 4(8), 404–412. https://doi.org/10.1038/ncprheum0855.
Arthur, J. R., McKenzie, R. C., & Beckett, G. J. (2003). Selenium in the immune system. The Journal of Nutrition, 133(5), 1457S-1459S. https://doi.org/10.1093/jn/133.5.1457s.
Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10, 1–20.
Bomfim, J. H. G. G., & Gonçalves, J. S. (2020). Suplementos alimentares, imunidade e COVID-19: qual a evidência? Vittale-Revista de Ciências da Saúde, 32(1), 10–21. https://doi.org/10.14295/vittalle.v32i1.11282.
Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181. https://doi.org/10.3390/nu12092696.
Cantorna, M. T., Snyder, L., Lin, Y.-D., & Yang, L. (2015). Vitamin D and 1, 25 (OH) 2D regulation of T cells. Nutrients, 7(4), 3011–3021. https://doi.org/10.3390/nu7043011.
Carvalho, M. C., & Oliveira, A. S. S. S. (2020). Zinco, vitamina D e sistema imune: papel na infecção pelo novo coronavírus. Revista da FAESF, 4, 16–27. https://doi.org/10.58969/25947125.4.0.2020.110.
Cassani, B., Villablanca, E. J., Calisto, J., Wang, S., & Mora, J. R. (2012). Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Molecular Aspects of Medicine, 33(1), 63–76. https://doi.org/10.1016/j.mam.2011.11.001.
Caussy, C., Wallet, F., Laville, M., & Disse, E. (2020). Obesity is associated with severe forms of COVID-19. Obesity, 28(7), 1175. https://doi.org/10.1002/oby.22842.
Chandra, R. K. (1992). Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. The Lancet, 340, 1124–1127. https://doi.org/10.1016/0140-6736(92)93151-C.
Chowdhury, A. I. (2020). Role and effects of micronutrients supplementation in immune system and SARS-Cov-2 (COVID-19). Asian Journal of Immunology, 4, 47–55.
De Bosscher, K., Vanden Berghe, W., & Haegeman, G. (2001). Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Molecular Endocrinology, 15(2), 219–227. https://doi.org/10.1210/mend.15.2.0591.
Ergas, D., Eilat, E., Mendlovic, S., & Sthoeger, Z. M. (2002). n-3 fatty acids and the immune system in autoimmunity. The Israel Medical Association Journal: IMAJ, 4(1), 34–38.
Fenton, J. I., Hord, N. G., Ghosh, S., & Gurzell, E. A. (2013). Long chain omega-3 fatty acid immunomodulation and the potential for adverse health outcomes. Prostaglandins, Leukotrienes and Essential Fatty Acidsukotrienes, and Essential Fatty Acids, 89(6), 379. https://doi.org/10.1016/j.plefa.2013.09.011.
Fogarty, H., Townsend, L., Cheallaigh, C. N., Bergin, C., Martin‐Loeches, I., Browne, P., Bacon, C. L., Gaule, R., Gillett, A., Byrne, M., Ryan, K., O’Connell, N., O’Sullivan, J. M., Conlon, N., & O’Donnell, J. S. (2020). COVId19 coagulopathy in caucasian patients. British Journal of Haematology, 189, 1044–1049. https://doi.org/10.1111/bjh.16772.
Fragoso, T. S., Dantas, A. T., Marques, C. D. L., Rocha Júnior, L. F., Melo, J. H. L., Costa, A. J. G., & Duarte, A. L. B. P. (2012). Níveis séricos de 25-hidroxivitamina D3 e sua associação com parâmetros clínicos e laboratoriais em pacientes com lupus eritematoso sistêmico. Revista Brasileira de Reumatologia, 52, 60–65. https://doi.org/10.1590/s0482-50042012000100007.
Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J., & Thompson, R. B. (2000). Importance of zinc in the central nervous system: the zinc-containing neuron. The Journal of Nutrition, 130(5), 1471S-1483S. https://doi.org/10.1093/jn/130.5.1471s.
Gammoh, N. Z., & Rink, L. (2017). Zinc in infection and inflammation. Nutrients, 9(6), 624. https://doi.org/10.3390/nu9060624.
Gasmi, A., Noor, S., Tippairote, T., Dadar, M., Menzel, A., & Bjørklund, G. (2020). Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clinical Immunology, 215, 108409. https://doi.org/10.1016/j.clim.2020.108409.
Ginde, A. A., Mansbach, J. M., & Camargo, C. A. (2009). Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 169(4), 384–390. https://doi.org/10.1001/archinternmed.2008.560.
Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu13114180.
Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988. https://doi.org/10.3390/nu12061626.
Greiller, C. L., & Martineau, A. R. (2015). Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 7(6), 4240–4270. https://doi.org/10.3390/nu7064240.
Guillin, O. M., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9), 2101. https://doi.org/10.3390/nu11092101.
Gutiérrez, S., Svahn, S. L., & Johansson, M. E. (2019). Effects of omega-3 fatty acids on immune cells. International Journal of Molecular Sciences, 20(20), 5028. https://doi.org/10.3390/ijms20205028.
Hojyo, S., & Fukada, T. (2016). Roles of zinc signaling in the immune system. Journal of Immunology Research, 2016, 1–22. https://doi.org/10.1155/2016/6762343.
Hopkins, R. G., & Failla, M. L. (1997). Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. The Journal of Nutrition, 127(2), 257–262. https://doi.org/0.1093/jn/127.2.257.
Hu, N., Li, Q.-B., & Zou, S.-Y. (2018). Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Chinese Journal of Contemporary Pediatrics, 20(2), 146–153. https://doi.org/10.7499/j.issn.1008-8830.2018.12.013.
Huang, F., Zhang, C., Liu, Q., Zhao, Y., Zhang, Y., Qin, Y., Li, X., Li, C., Zhou, C., & Jin, N. (2020). Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathogens, 16(3), e1008341. https://doi.org/10.1371/journal.ppat.1008341.
Huang, Z., Liu, Y., Qi, G., Brand, D., & Zheng, S. G. (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9), 1–7. https://doi.org/10.3390/jcm7090258.
Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25, 11–24.
Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 367–382. https://doi.org/10.1016/j.dsx.2020.06.009.
Kassis, N. M., Beamer, S. K., Matak, K. E., Tou, J. C., & Jaczynski, J. (2010). Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT - Food Science and Technology, 43(8), 1204–1212. https://doi.org/http://dx.doi.org/10.1016/j.lwt.2010.04.006.
Katz, D. L., Evans, M. A., Nawaz, H., Njike, V. Y., Chan, W., Comerford, B. P., & Hoxley, M. L. (2005). Egg consumption and endothelial function: a randomized controlled crossover trial. International Journal of Cardiology, 99(1), 65–70. https://doi.org/10.1016/j.ijcard.2003.11.028.
Kim, J. E., Leite, J. O., Ogburn, R., Cllark, R. M., & Fernandez, M. L. A. (2011). A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of Guinea pigs. Journal of Nutrition, 141(8), 1458–1463. https://doi.org/10.3945/jn.111.141630.
Köhrle, J., Brigelius-Flohé, R., Böck, A., Gärtner, R., Meyer, O., & Flohé, L. (2000). Selenium in biology: facts and medical perspectives. Biological Chemistry, 381, 849–864. https://doi.org/10.1515/BC.2000.107.
Koller, L. D., Mulhern, S. A., Frankel, N. C., Steven, M. G., & Williams, J. R. (1987). Immune dysfunction in rats fed a diet deficient in copper. The American Journal of Clinical Nutrition, 45(5), 997–1006. https://doi.org/10.1093/ajcn/45.5.997.
Krinsky, N. I., Landrum, J. T., & Bone, R. A. (2003). Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition, 23(1), 171–201. https://doi.org/10.1146/annurev.nutr.23.011702.073307.
Laaksi, I., Ruohola, J. P., Tuohimaa, P., Auvinen, A., Haataja, R., Pihlajamäki, H., & Ylikomi, T. (2007). An association of serum vitamin D concentrations< 40 nmol/L with acute respiratory tract infection in young Finnish men. The American Journal of Clinical Nutrition, 86(3), 714–717. https://doi.org/10.1093/ajcn/86.3.714.
Lassi, Z. S., Moin, A., & Bhutta, Z. A. (2016). Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database of Systematic Reviews, 12, 1–31. https://doi.org/10.1002/14651858.CD005978.pub3.
Lei, G.-S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of action of vitamin D as supplemental therapy for Pneumocystis pneumonia. Antimicrobial Agents and Chemotherapy, 61(10), 1–13. https://doi.org/10.1128/AAC.01226-17.
Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487–494. https://doi.org/10.1002/iub.1976.
Li, C., Li, Y., & Ding, C. (2019). The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. International Journal of Molecular Sciences, 20(1), 175. https://doi.org/10.3390/ijms20010175.
Lima, W. L., Batista, M. C. C., Silvino, V. O., Moura, R. C., Mendes, I. L., Moura, M. S. B., Batista, N. K. C., Silva, K. R., & Barbosa, A. K. S. (2020). Importância nutricional das vitaminas e minerais na infecção da COVID-19. Research, Society and Development, 9(8), e804986103–e804986103. https://doi.org/10.33448/rsd-v9i8.6103.
Lutter, C. K., Iannotti, L. L., & Stewart, C. P. (2018). The potential of a simple egg to improve maternal and child nutrition. Maternal & Child Nutrition, 14, e12678. https://doi.org/10.1111/mcn.12678.
Mafra, D., & Cozzolino, S. M. F. (2004). Importância do zinco na nutrição humana. Revista de Nutrição, 17, 79–87. https://doi.org/10.1590/s1415-52732004000100009.
Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune function and micronutrient requirements change over the life course. Nutrients, 10(10), 1531. https://doi.org/10.3390/nu10101531.
Mao, S., Zhang, A., & Huang, S. (2014). Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection. Scandinavian Journal of Clinical and Laboratory Investigation, 74(7), 561–567. https://doi.org/10.3109/00365513.2014.921323.
Meydani, S. N., Leka, L. S., Fine, B. C., Dallal, G. E., Keusch, G. T., Singh, M. F., & Hamer, D. H. (2004). Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. Jama, 292(7), 828–836. https://doi.org/10.1001/jama.292.7.828.
Moriguchi, S., & Kaneyasu, M. (2004). Role of vitamin E in immune system. Journal of Clinical Biochemistry and Nutrition, 34(3), 97–109. https://doi.org/10.3164/jcbn.34.97.
Mossink, J. P. (2020). Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention & Health, 3(1), 111. https://doi.org/10.1136/bmjnph-2020-000095.
Munoz, C., Rios, E., Olivos, J., Brunser, O., & Olivares, M. (2007). Iron, copper and immunocompetence. British Journal of Nutrition, 98(S1), S24–S28. https://doi.org/10.1017/S0007114507833046.
Muscogiuri, G., Barrea, L., Savastano, S., & Colao, A. (2020). Nutritional recommendations for CoVID-19 quarantine. European Journal of Clinical Nutrition, 74(6), 850–851.
Pan, M., Cederbaum, A. I., Zhang, Y.-L., Ginsberg, H. N., Williams, K. J., & Fisher, E. A. (2004). Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. The Journal of Clinical Investigation, 113(9), 1277–1287. https://doi.org/10.1172/JCI19197.
Percival, S. S. (1998). Copper and immunity. The American Journal of Clinical Nutrition, 67(5), S1064–S1068. https://doi.org/10.1093/ajcn/67.5.1064S.
Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814.
Science, M., Johnstone, J., Roth, D. E., Guyatt, G., & Loeb, M. (2012). Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Cmaj, 184(10), E551–E561. https://doi.org/2012. DOI:10.1503 /cmaj.111990.
Shankar, A. H., & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. The American Journal of Clinical Nutrition, 68(2), 447S-463S. https://doi.org/10.1093/ajcn/68.2.447S.
Sharifi, A., Vahedi, H., Nedjat, S., Rafiei, H., & Hosseinzadeh‐Attar, M. J. (2019). Effect of single‐dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo‐controlled trial. Apmis, 127(10), 681–687. https://doi.org/10.1111/apm.12982.
Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., & Jourdain, M. (2020). High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity, 28(7), 1195–1199. https://doi.org/10.1002/oby.22831.
Stipp, M. M. (2020). SARS-CoV-2: micronutrient optimization in supporting host immunocompetence. International Journal of Clinical Case Reports and Reviews, 2(2), 1–10. https://doi.org/10.31579/2690-4861/024.
Suárez-Machecha, H., Francisco, A. D., Beirão, L. H., Block, J. M., Saccol, A., & Pardo, S. C. (2002). Importância de ácidos graxos poliinsaturados presentes em peixes de cultivo e de ambiente natural para a nutrição humana. Boletim Do Instituto de Pesca, 28(1), 101–110.
Suzuki, H., Kume, A., & Herbas, M. S. (2018). Potential of vitamin E deficiency, induced by inhibition of α-tocopherol efflux, in murine malaria infection. International Journal of Molecular Sciences, 20(1), 64. https://doi.org/10.3390/ijms20010064.
Teymoori‐Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. https://doi.org/10.1002/rmv.2032.
Trasino, S. E. (2020). A role for retinoids in the treatment of COVID‐19? Clinical and Experimental Pharmacology and Physiology, 47(10), 1765–1767. https://doi.org/10.1111/1440-1681.13354.
Velthuis, A. J. W., van den Worm, S. H. E., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11), e1001176. https://doi.org/10.1371/journal.ppat.1001176.
Wessels, I., Maywald, M., & Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients, 9(12), 1286. https://doi.org/10.3390/nu9121286.
Willheim, M., Thien, R., Schrattbauer, K., Bajna, E., Holub, M., Gruber, R., Baier, K., Pietschmann, P., Reinisch, W., & Scheiner, O. (1999). Regulatory effects of 1α, 25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. The Journal of Clinical Endocrinology & Metabolism, 84(10), 3739–3744. https://doi.org/10.1210/jcem.84.10.6054.
Wimalawansa, S. J. (2020). Global epidemic of coronavirus—Covid-19: what can we do to minimize risks. European Journal of Biomedical, 7(3), 432–438.
Yaroshenko, F. O., Dvorska, J. E., Surai, P. F., & Sparks, N. H. C. (2003). elenium-enriched eggs as a source of selenium for human consumption. Applied Biotechnology, Food Science and Policy, 1(1), 13–23.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Jalceyr Pessoa Figueiredo Junior, Marcelo Helder Medeiros Santana, Marina Farias de Albuquerque, Sérgio Antônio de Normando Moraes, Élcio Gonçalves dos Santos, Sarah Gomes Pinheiro
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.