Relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico: Revisão

Autores

  • Jalceyr Pessoa Figueiredo Junior Secretaria de Estado de Agricultura do Acre https://orcid.org/0000-0002-2044-1247
  • Marcelo Helder Medeiros Santana Instituto Federal de Educação, Ciência e Tecnologia da Paraíba https://orcid.org/0000-0002-4578-5716
  • Marina Farias de Albuquerque Secretaria de Estado de Agricultura do Acre https://orcid.org/0000-0001-5108-5858
  • Sérgio Antônio de Normando Moraes Instituto Federal de Educação, Ciência e Tecnologia da Paraíba
  • Élcio Gonçalves dos Santos Instituto Federal de Educação, Ciência e Tecnologia de Alagoas
  • Sarah Gomes Pinheiro Eubiotic Tecnologia Animal Sustentável, Fortaleza

DOI:

https://doi.org/10.31533/pubvet.v17n11e1484

Palavras-chave:

alimentos, nutrientes, produção animal

Resumo

O ovo de uma galinha contém substâncias promotoras da saúde e preventivas de doenças, tornando-o um alimento funcional, além de ser importante reserva de proteínas, lipídeos, vitaminas e minerais. Dessa forma, objetivou-se, com este trabalho, discutir a relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico. Dentre os principais nutrientes presentes no ovo que podem exercer função imunomoduladora, e contribuir com a atividade do sistema imunológico, em específico na prevenção e combate de doenças, podem-se citar as vitaminas lipossolúveis A, D e E, os microminerais: cobre (Cu), selênio (Se) e zinco (Zn), e os ácidos graxos da família ômega-3 (AGs ω-3). A partir da presença desses componentes nutricionais, o consumo do ovo irá contribuir na formação, desenvolvimento e funcionamento do sistema imunológico, em decorrência de sua composição nutricional poder auxiliar nas ações de defesa do organismo humano, e conseqüentemente na prevenção e combate de doenças. Nesse sentido, a ingestão dos nutrientes funcionais presentes no ovo, alimento de baixo custo e de fácil aquisição, irá proporcionar uma melhor saúde da população, a partir de uma maior realização de atividades biológicas, que possam propiciar uma estrutura corporal mais forte e resistente.

Referências

Adorini, L., & Penna, G. (2008). Control of autoimmune diseases by the vitamin D endocrine system. Nature Clinical Practice Rheumatology, 4(8), 404–412. https://doi.org/10.1038/ncprheum0855.

Arthur, J. R., McKenzie, R. C., & Beckett, G. J. (2003). Selenium in the immune system. The Journal of Nutrition, 133(5), 1457S-1459S. https://doi.org/10.1093/jn/133.5.1457s.

Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10, 1–20.

Bomfim, J. H. G. G., & Gonçalves, J. S. (2020). Suplementos alimentares, imunidade e COVID-19: qual a evidência? Vittale-Revista de Ciências da Saúde, 32(1), 10–21. https://doi.org/10.14295/vittalle.v32i1.11282.

Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181. https://doi.org/10.3390/nu12092696.

Cantorna, M. T., Snyder, L., Lin, Y.-D., & Yang, L. (2015). Vitamin D and 1, 25 (OH) 2D regulation of T cells. Nutrients, 7(4), 3011–3021. https://doi.org/10.3390/nu7043011.

Carvalho, M. C., & Oliveira, A. S. S. S. (2020). Zinco, vitamina D e sistema imune: papel na infecção pelo novo coronavírus. Revista da FAESF, 4, 16–27. https://doi.org/10.58969/25947125.4.0.2020.110.

Cassani, B., Villablanca, E. J., Calisto, J., Wang, S., & Mora, J. R. (2012). Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Molecular Aspects of Medicine, 33(1), 63–76. https://doi.org/10.1016/j.mam.2011.11.001.

Caussy, C., Wallet, F., Laville, M., & Disse, E. (2020). Obesity is associated with severe forms of COVID-19. Obesity, 28(7), 1175. https://doi.org/10.1002/oby.22842.

Chandra, R. K. (1992). Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. The Lancet, 340, 1124–1127. https://doi.org/10.1016/0140-6736(92)93151-C.

Chowdhury, A. I. (2020). Role and effects of micronutrients supplementation in immune system and SARS-Cov-2 (COVID-19). Asian Journal of Immunology, 4, 47–55.

De Bosscher, K., Vanden Berghe, W., & Haegeman, G. (2001). Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Molecular Endocrinology, 15(2), 219–227. https://doi.org/10.1210/mend.15.2.0591.

Ergas, D., Eilat, E., Mendlovic, S., & Sthoeger, Z. M. (2002). n-3 fatty acids and the immune system in autoimmunity. The Israel Medical Association Journal: IMAJ, 4(1), 34–38.

Fenton, J. I., Hord, N. G., Ghosh, S., & Gurzell, E. A. (2013). Long chain omega-3 fatty acid immunomodulation and the potential for adverse health outcomes. Prostaglandins, Leukotrienes and Essential Fatty Acidsukotrienes, and Essential Fatty Acids, 89(6), 379. https://doi.org/10.1016/j.plefa.2013.09.011.

Fogarty, H., Townsend, L., Cheallaigh, C. N., Bergin, C., Martin‐Loeches, I., Browne, P., Bacon, C. L., Gaule, R., Gillett, A., Byrne, M., Ryan, K., O’Connell, N., O’Sullivan, J. M., Conlon, N., & O’Donnell, J. S. (2020). COVId19 coagulopathy in caucasian patients. British Journal of Haematology, 189, 1044–1049. https://doi.org/10.1111/bjh.16772.

Fragoso, T. S., Dantas, A. T., Marques, C. D. L., Rocha Júnior, L. F., Melo, J. H. L., Costa, A. J. G., & Duarte, A. L. B. P. (2012). Níveis séricos de 25-hidroxivitamina D3 e sua associação com parâmetros clínicos e laboratoriais em pacientes com lupus eritematoso sistêmico. Revista Brasileira de Reumatologia, 52, 60–65. https://doi.org/10.1590/s0482-50042012000100007.

Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J., & Thompson, R. B. (2000). Importance of zinc in the central nervous system: the zinc-containing neuron. The Journal of Nutrition, 130(5), 1471S-1483S. https://doi.org/10.1093/jn/130.5.1471s.

Gammoh, N. Z., & Rink, L. (2017). Zinc in infection and inflammation. Nutrients, 9(6), 624. https://doi.org/10.3390/nu9060624.

Gasmi, A., Noor, S., Tippairote, T., Dadar, M., Menzel, A., & Bjørklund, G. (2020). Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clinical Immunology, 215, 108409. https://doi.org/10.1016/j.clim.2020.108409.

Ginde, A. A., Mansbach, J. M., & Camargo, C. A. (2009). Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 169(4), 384–390. https://doi.org/10.1001/archinternmed.2008.560.

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu13114180.

Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988. https://doi.org/10.3390/nu12061626.

Greiller, C. L., & Martineau, A. R. (2015). Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 7(6), 4240–4270. https://doi.org/10.3390/nu7064240.

Guillin, O. M., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9), 2101. https://doi.org/10.3390/nu11092101.

Gutiérrez, S., Svahn, S. L., & Johansson, M. E. (2019). Effects of omega-3 fatty acids on immune cells. International Journal of Molecular Sciences, 20(20), 5028. https://doi.org/10.3390/ijms20205028.

Hojyo, S., & Fukada, T. (2016). Roles of zinc signaling in the immune system. Journal of Immunology Research, 2016, 1–22. https://doi.org/10.1155/2016/6762343.

Hopkins, R. G., & Failla, M. L. (1997). Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. The Journal of Nutrition, 127(2), 257–262. https://doi.org/0.1093/jn/127.2.257.

Hu, N., Li, Q.-B., & Zou, S.-Y. (2018). Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Chinese Journal of Contemporary Pediatrics, 20(2), 146–153. https://doi.org/10.7499/j.issn.1008-8830.2018.12.013.

Huang, F., Zhang, C., Liu, Q., Zhao, Y., Zhang, Y., Qin, Y., Li, X., Li, C., Zhou, C., & Jin, N. (2020). Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathogens, 16(3), e1008341. https://doi.org/10.1371/journal.ppat.1008341.

Huang, Z., Liu, Y., Qi, G., Brand, D., & Zheng, S. G. (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9), 1–7. https://doi.org/10.3390/jcm7090258.

Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25, 11–24.

Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 367–382. https://doi.org/10.1016/j.dsx.2020.06.009.

Kassis, N. M., Beamer, S. K., Matak, K. E., Tou, J. C., & Jaczynski, J. (2010). Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT - Food Science and Technology, 43(8), 1204–1212. https://doi.org/http://dx.doi.org/10.1016/j.lwt.2010.04.006.

Katz, D. L., Evans, M. A., Nawaz, H., Njike, V. Y., Chan, W., Comerford, B. P., & Hoxley, M. L. (2005). Egg consumption and endothelial function: a randomized controlled crossover trial. International Journal of Cardiology, 99(1), 65–70. https://doi.org/10.1016/j.ijcard.2003.11.028.

Kim, J. E., Leite, J. O., Ogburn, R., Cllark, R. M., & Fernandez, M. L. A. (2011). A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of Guinea pigs. Journal of Nutrition, 141(8), 1458–1463. https://doi.org/10.3945/jn.111.141630.

Köhrle, J., Brigelius-Flohé, R., Böck, A., Gärtner, R., Meyer, O., & Flohé, L. (2000). Selenium in biology: facts and medical perspectives. Biological Chemistry, 381, 849–864. https://doi.org/10.1515/BC.2000.107.

Koller, L. D., Mulhern, S. A., Frankel, N. C., Steven, M. G., & Williams, J. R. (1987). Immune dysfunction in rats fed a diet deficient in copper. The American Journal of Clinical Nutrition, 45(5), 997–1006. https://doi.org/10.1093/ajcn/45.5.997.

Krinsky, N. I., Landrum, J. T., & Bone, R. A. (2003). Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition, 23(1), 171–201. https://doi.org/10.1146/annurev.nutr.23.011702.073307.

Laaksi, I., Ruohola, J. P., Tuohimaa, P., Auvinen, A., Haataja, R., Pihlajamäki, H., & Ylikomi, T. (2007). An association of serum vitamin D concentrations< 40 nmol/L with acute respiratory tract infection in young Finnish men. The American Journal of Clinical Nutrition, 86(3), 714–717. https://doi.org/10.1093/ajcn/86.3.714.

Lassi, Z. S., Moin, A., & Bhutta, Z. A. (2016). Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database of Systematic Reviews, 12, 1–31. https://doi.org/10.1002/14651858.CD005978.pub3.

Lei, G.-S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of action of vitamin D as supplemental therapy for Pneumocystis pneumonia. Antimicrobial Agents and Chemotherapy, 61(10), 1–13. https://doi.org/10.1128/AAC.01226-17.

Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487–494. https://doi.org/10.1002/iub.1976.

Li, C., Li, Y., & Ding, C. (2019). The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. International Journal of Molecular Sciences, 20(1), 175. https://doi.org/10.3390/ijms20010175.

Lima, W. L., Batista, M. C. C., Silvino, V. O., Moura, R. C., Mendes, I. L., Moura, M. S. B., Batista, N. K. C., Silva, K. R., & Barbosa, A. K. S. (2020). Importância nutricional das vitaminas e minerais na infecção da COVID-19. Research, Society and Development, 9(8), e804986103–e804986103. https://doi.org/10.33448/rsd-v9i8.6103.

Lutter, C. K., Iannotti, L. L., & Stewart, C. P. (2018). The potential of a simple egg to improve maternal and child nutrition. Maternal & Child Nutrition, 14, e12678. https://doi.org/10.1111/mcn.12678.

Mafra, D., & Cozzolino, S. M. F. (2004). Importância do zinco na nutrição humana. Revista de Nutrição, 17, 79–87. https://doi.org/10.1590/s1415-52732004000100009.

Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune function and micronutrient requirements change over the life course. Nutrients, 10(10), 1531. https://doi.org/10.3390/nu10101531.

Mao, S., Zhang, A., & Huang, S. (2014). Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection. Scandinavian Journal of Clinical and Laboratory Investigation, 74(7), 561–567. https://doi.org/10.3109/00365513.2014.921323.

Meydani, S. N., Leka, L. S., Fine, B. C., Dallal, G. E., Keusch, G. T., Singh, M. F., & Hamer, D. H. (2004). Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. Jama, 292(7), 828–836. https://doi.org/10.1001/jama.292.7.828.

Moriguchi, S., & Kaneyasu, M. (2004). Role of vitamin E in immune system. Journal of Clinical Biochemistry and Nutrition, 34(3), 97–109. https://doi.org/10.3164/jcbn.34.97.

Mossink, J. P. (2020). Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention & Health, 3(1), 111. https://doi.org/10.1136/bmjnph-2020-000095.

Munoz, C., Rios, E., Olivos, J., Brunser, O., & Olivares, M. (2007). Iron, copper and immunocompetence. British Journal of Nutrition, 98(S1), S24–S28. https://doi.org/10.1017/S0007114507833046.

Muscogiuri, G., Barrea, L., Savastano, S., & Colao, A. (2020). Nutritional recommendations for CoVID-19 quarantine. European Journal of Clinical Nutrition, 74(6), 850–851.

Pan, M., Cederbaum, A. I., Zhang, Y.-L., Ginsberg, H. N., Williams, K. J., & Fisher, E. A. (2004). Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. The Journal of Clinical Investigation, 113(9), 1277–1287. https://doi.org/10.1172/JCI19197.

Percival, S. S. (1998). Copper and immunity. The American Journal of Clinical Nutrition, 67(5), S1064–S1068. https://doi.org/10.1093/ajcn/67.5.1064S.

Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814.

Science, M., Johnstone, J., Roth, D. E., Guyatt, G., & Loeb, M. (2012). Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Cmaj, 184(10), E551–E561. https://doi.org/2012. DOI:10.1503 /cmaj.111990.

Shankar, A. H., & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. The American Journal of Clinical Nutrition, 68(2), 447S-463S. https://doi.org/10.1093/ajcn/68.2.447S.

Sharifi, A., Vahedi, H., Nedjat, S., Rafiei, H., & Hosseinzadeh‐Attar, M. J. (2019). Effect of single‐dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo‐controlled trial. Apmis, 127(10), 681–687. https://doi.org/10.1111/apm.12982.

Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., & Jourdain, M. (2020). High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity, 28(7), 1195–1199. https://doi.org/10.1002/oby.22831.

Stipp, M. M. (2020). SARS-CoV-2: micronutrient optimization in supporting host immunocompetence. International Journal of Clinical Case Reports and Reviews, 2(2), 1–10. https://doi.org/10.31579/2690-4861/024.

Suárez-Machecha, H., Francisco, A. D., Beirão, L. H., Block, J. M., Saccol, A., & Pardo, S. C. (2002). Importância de ácidos graxos poliinsaturados presentes em peixes de cultivo e de ambiente natural para a nutrição humana. Boletim Do Instituto de Pesca, 28(1), 101–110.

Suzuki, H., Kume, A., & Herbas, M. S. (2018). Potential of vitamin E deficiency, induced by inhibition of α-tocopherol efflux, in murine malaria infection. International Journal of Molecular Sciences, 20(1), 64. https://doi.org/10.3390/ijms20010064.

Teymoori‐Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. https://doi.org/10.1002/rmv.2032.

Trasino, S. E. (2020). A role for retinoids in the treatment of COVID‐19? Clinical and Experimental Pharmacology and Physiology, 47(10), 1765–1767. https://doi.org/10.1111/1440-1681.13354.

Velthuis, A. J. W., van den Worm, S. H. E., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11), e1001176. https://doi.org/10.1371/journal.ppat.1001176.

Wessels, I., Maywald, M., & Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients, 9(12), 1286. https://doi.org/10.3390/nu9121286.

Willheim, M., Thien, R., Schrattbauer, K., Bajna, E., Holub, M., Gruber, R., Baier, K., Pietschmann, P., Reinisch, W., & Scheiner, O. (1999). Regulatory effects of 1α, 25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. The Journal of Clinical Endocrinology & Metabolism, 84(10), 3739–3744. https://doi.org/10.1210/jcem.84.10.6054.

Wimalawansa, S. J. (2020). Global epidemic of coronavirus—Covid-19: what can we do to minimize risks. European Journal of Biomedical, 7(3), 432–438.

Yaroshenko, F. O., Dvorska, J. E., Surai, P. F., & Sparks, N. H. C. (2003). elenium-enriched eggs as a source of selenium for human consumption. Applied Biotechnology, Food Science and Policy, 1(1), 13–23.

Downloads

Publicado

05-11-2023

Edição

Seção

Ciência e tecnologia de alimentos

Como Citar

Relação das propriedades nutritivas do ovo com o funcionamento do sistema imunológico: Revisão. (2023). Pubvet, 17(11), e1484. https://doi.org/10.31533/pubvet.v17n11e1484