Relationship of the egg’s nutritional properties with the functioning of the immune system: Review

Authors

  • Jalceyr Pessoa Figueiredo Junior Secretaria de Estado de Agricultura do Acre https://orcid.org/0000-0002-2044-1247
  • Marcelo Helder Medeiros Santana Instituto Federal de Educação, Ciência e Tecnologia da Paraíba https://orcid.org/0000-0002-4578-5716
  • Marina Farias de Albuquerque Secretaria de Estado de Agricultura do Acre https://orcid.org/0000-0001-5108-5858
  • Sérgio Antônio de Normando Moraes Instituto Federal de Educação, Ciência e Tecnologia da Paraíba
  • Élcio Gonçalves dos Santos Santos Instituto Federal de Educação, Ciência e Tecnologia de Alagoas
  • Sarah Gomes Pinheiro Pinheiro Eubiotic Tecnologia Animal Sustentável, Fortaleza

DOI:

https://doi.org/10.31533/pubvet.v17n11e1484

Keywords:

foods, nutrients, animal science

Abstract

The chicken egg contains health promoting and disease preventing substances, making it a functional food, in addition to being an important reserve of proteins, lipids, vitamins and minerals. Therefore, the aim of this work was to discuss the relationship between the nutritional properties of eggs and the functioning of the immune system. Among the main nutrients present in the egg that can exert an immunomodulatory function and contribute to the activity of the immune system, specifically in preventing and combating diseases, we can mention: the fat-soluble vitamins A, D and E; the microminerals copper (Cu), selenium (Se) and zinc (Zn) and fatty acids from the omega-3 family (ω-3 AGs). Based on the presence of these nutritional components, egg consumption will contribute to the formation, development and functioning of the immune system, as its nutritional composition can assist in the defense actions of the human body, and consequently in preventing and combating diseases. In this sense, the intake of functional nutrients present in eggs, a low-cost and easily acquired food, will provide better health for the population through greater biological activities, which can provide a stronger and more resistant body structure.

References

Adorini, L., & Penna, G. (2008). Control of autoimmune diseases by the vitamin D endocrine system. Nature Clinical Practice Rheumatology, 4(8), 404–412. https://doi.org/10.1038/ncprheum0855.

Arthur, J. R., McKenzie, R. C., & Beckett, G. J. (2003). Selenium in the immune system. The Journal of Nutrition, 133(5), 1457S-1459S. https://doi.org/10.1093/jn/133.5.1457s.

Avery, J. C., & Hoffmann, P. R. (2018). Selenium, selenoproteins, and immunity. Nutrients, 10, 1–20.

Bomfim, J. H. G. G., & Gonçalves, J. S. (2020). Suplementos alimentares, imunidade e COVID-19: qual a evidência? Vittale-Revista de Ciências da Saúde, 32(1), 10–21. https://doi.org/10.14295/vittalle.v32i1.11282.

Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181. https://doi.org/10.3390/nu12092696.

Cantorna, M. T., Snyder, L., Lin, Y.-D., & Yang, L. (2015). Vitamin D and 1, 25 (OH) 2D regulation of T cells. Nutrients, 7(4), 3011–3021. https://doi.org/10.3390/nu7043011.

Carvalho, M. C., & Oliveira, A. S. S. S. (2020). Zinco, vitamina D e sistema imune: papel na infecção pelo novo coronavírus. Revista da FAESF, 4, 16–27. https://doi.org/10.58969/25947125.4.0.2020.110.

Cassani, B., Villablanca, E. J., Calisto, J., Wang, S., & Mora, J. R. (2012). Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Molecular Aspects of Medicine, 33(1), 63–76. https://doi.org/10.1016/j.mam.2011.11.001.

Caussy, C., Wallet, F., Laville, M., & Disse, E. (2020). Obesity is associated with severe forms of COVID-19. Obesity, 28(7), 1175. https://doi.org/10.1002/oby.22842.

Chandra, R. K. (1992). Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. The Lancet, 340, 1124–1127. https://doi.org/10.1016/0140-6736(92)93151-C.

Chowdhury, A. I. (2020). Role and effects of micronutrients supplementation in immune system and SARS-Cov-2 (COVID-19). Asian Journal of Immunology, 4, 47–55.

De Bosscher, K., Vanden Berghe, W., & Haegeman, G. (2001). Glucocorticoid repression of AP-1 is not mediated by competition for nuclear coactivators. Molecular Endocrinology, 15(2), 219–227. https://doi.org/10.1210/mend.15.2.0591.

Ergas, D., Eilat, E., Mendlovic, S., & Sthoeger, Z. M. (2002). n-3 fatty acids and the immune system in autoimmunity. The Israel Medical Association Journal: IMAJ, 4(1), 34–38.

Fenton, J. I., Hord, N. G., Ghosh, S., & Gurzell, E. A. (2013). Long chain omega-3 fatty acid immunomodulation and the potential for adverse health outcomes. Prostaglandins, Leukotrienes and Essential Fatty Acidsukotrienes, and Essential Fatty Acids, 89(6), 379. https://doi.org/10.1016/j.plefa.2013.09.011.

Fogarty, H., Townsend, L., Cheallaigh, C. N., Bergin, C., Martin‐Loeches, I., Browne, P., Bacon, C. L., Gaule, R., Gillett, A., Byrne, M., Ryan, K., O’Connell, N., O’Sullivan, J. M., Conlon, N., & O’Donnell, J. S. (2020). COVId19 coagulopathy in caucasian patients. British Journal of Haematology, 189, 1044–1049. https://doi.org/10.1111/bjh.16772.

Fragoso, T. S., Dantas, A. T., Marques, C. D. L., Rocha Júnior, L. F., Melo, J. H. L., Costa, A. J. G., & Duarte, A. L. B. P. (2012). Níveis séricos de 25-hidroxivitamina D3 e sua associação com parâmetros clínicos e laboratoriais em pacientes com lupus eritematoso sistêmico. Revista Brasileira de Reumatologia, 52, 60–65. https://doi.org/10.1590/s0482-50042012000100007.

Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J., & Thompson, R. B. (2000). Importance of zinc in the central nervous system: the zinc-containing neuron. The Journal of Nutrition, 130(5), 1471S-1483S. https://doi.org/10.1093/jn/130.5.1471s.

Gammoh, N. Z., & Rink, L. (2017). Zinc in infection and inflammation. Nutrients, 9(6), 624. https://doi.org/10.3390/nu9060624.

Gasmi, A., Noor, S., Tippairote, T., Dadar, M., Menzel, A., & Bjørklund, G. (2020). Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clinical Immunology, 215, 108409. https://doi.org/10.1016/j.clim.2020.108409.

Ginde, A. A., Mansbach, J. M., & Camargo, C. A. (2009). Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Archives of Internal Medicine, 169(4), 384–390. https://doi.org/10.1001/archinternmed.2008.560.

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu13114180.

Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), 988. https://doi.org/10.3390/nu12061626.

Greiller, C. L., & Martineau, A. R. (2015). Modulation of the immune response to respiratory viruses by vitamin D. Nutrients, 7(6), 4240–4270. https://doi.org/10.3390/nu7064240.

Guillin, O. M., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9), 2101. https://doi.org/10.3390/nu11092101.

Gutiérrez, S., Svahn, S. L., & Johansson, M. E. (2019). Effects of omega-3 fatty acids on immune cells. International Journal of Molecular Sciences, 20(20), 5028. https://doi.org/10.3390/ijms20205028.

Hojyo, S., & Fukada, T. (2016). Roles of zinc signaling in the immune system. Journal of Immunology Research, 2016, 1–22. https://doi.org/10.1155/2016/6762343.

Hopkins, R. G., & Failla, M. L. (1997). Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. The Journal of Nutrition, 127(2), 257–262. https://doi.org/0.1093/jn/127.2.257.

Hu, N., Li, Q.-B., & Zou, S.-Y. (2018). Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Chinese Journal of Contemporary Pediatrics, 20(2), 146–153. https://doi.org/10.7499/j.issn.1008-8830.2018.12.013.

Huang, F., Zhang, C., Liu, Q., Zhao, Y., Zhang, Y., Qin, Y., Li, X., Li, C., Zhou, C., & Jin, N. (2020). Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathogens, 16(3), e1008341. https://doi.org/10.1371/journal.ppat.1008341.

Huang, Z., Liu, Y., Qi, G., Brand, D., & Zheng, S. G. (2018). Role of vitamin A in the immune system. Journal of Clinical Medicine, 7(9), 1–7. https://doi.org/10.3390/jcm7090258.

Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K., & Librowski, T. (2017). Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology, 25, 11–24.

Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 367–382. https://doi.org/10.1016/j.dsx.2020.06.009.

Kassis, N. M., Beamer, S. K., Matak, K. E., Tou, J. C., & Jaczynski, J. (2010). Nutritional composition of novel nutraceutical egg products developed with omega-3-rich oils. LWT - Food Science and Technology, 43(8), 1204–1212. https://doi.org/http://dx.doi.org/10.1016/j.lwt.2010.04.006.

Katz, D. L., Evans, M. A., Nawaz, H., Njike, V. Y., Chan, W., Comerford, B. P., & Hoxley, M. L. (2005). Egg consumption and endothelial function: a randomized controlled crossover trial. International Journal of Cardiology, 99(1), 65–70. https://doi.org/10.1016/j.ijcard.2003.11.028.

Kim, J. E., Leite, J. O., Ogburn, R., Cllark, R. M., & Fernandez, M. L. A. (2011). A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of Guinea pigs. Journal of Nutrition, 141(8), 1458–1463. https://doi.org/10.3945/jn.111.141630.

Köhrle, J., Brigelius-Flohé, R., Böck, A., Gärtner, R., Meyer, O., & Flohé, L. (2000). Selenium in biology: facts and medical perspectives. Biological Chemistry, 381, 849–864. https://doi.org/10.1515/BC.2000.107.

Koller, L. D., Mulhern, S. A., Frankel, N. C., Steven, M. G., & Williams, J. R. (1987). Immune dysfunction in rats fed a diet deficient in copper. The American Journal of Clinical Nutrition, 45(5), 997–1006. https://doi.org/10.1093/ajcn/45.5.997.

Krinsky, N. I., Landrum, J. T., & Bone, R. A. (2003). Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annual Review of Nutrition, 23(1), 171–201. https://doi.org/10.1146/annurev.nutr.23.011702.073307.

Laaksi, I., Ruohola, J. P., Tuohimaa, P., Auvinen, A., Haataja, R., Pihlajamäki, H., & Ylikomi, T. (2007). An association of serum vitamin D concentrations< 40 nmol/L with acute respiratory tract infection in young Finnish men. The American Journal of Clinical Nutrition, 86(3), 714–717. https://doi.org/10.1093/ajcn/86.3.714.

Lassi, Z. S., Moin, A., & Bhutta, Z. A. (2016). Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months. Cochrane Database of Systematic Reviews, 12, 1–31. https://doi.org/10.1002/14651858.CD005978.pub3.

Lei, G.-S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of action of vitamin D as supplemental therapy for Pneumocystis pneumonia. Antimicrobial Agents and Chemotherapy, 61(10), 1–13. https://doi.org/10.1128/AAC.01226-17.

Lewis, E. D., Meydani, S. N., & Wu, D. (2019). Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life, 71(4), 487–494. https://doi.org/10.1002/iub.1976.

Li, C., Li, Y., & Ding, C. (2019). The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. International Journal of Molecular Sciences, 20(1), 175. https://doi.org/10.3390/ijms20010175.

Lima, W. L., Batista, M. C. C., Silvino, V. O., Moura, R. C., Mendes, I. L., Moura, M. S. B., Batista, N. K. C., Silva, K. R., & Barbosa, A. K. S. (2020). Importância nutricional das vitaminas e minerais na infecção da COVID-19. Research, Society and Development, 9(8), e804986103–e804986103. https://doi.org/10.33448/rsd-v9i8.6103.

Lutter, C. K., Iannotti, L. L., & Stewart, C. P. (2018). The potential of a simple egg to improve maternal and child nutrition. Maternal & Child Nutrition, 14, e12678. https://doi.org/10.1111/mcn.12678.

Mafra, D., & Cozzolino, S. M. F. (2004). Importância do zinco na nutrição humana. Revista de Nutrição, 17, 79–87. https://doi.org/10.1590/s1415-52732004000100009.

Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune function and micronutrient requirements change over the life course. Nutrients, 10(10), 1531. https://doi.org/10.3390/nu10101531.

Mao, S., Zhang, A., & Huang, S. (2014). Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection. Scandinavian Journal of Clinical and Laboratory Investigation, 74(7), 561–567. https://doi.org/10.3109/00365513.2014.921323.

Meydani, S. N., Leka, L. S., Fine, B. C., Dallal, G. E., Keusch, G. T., Singh, M. F., & Hamer, D. H. (2004). Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. Jama, 292(7), 828–836. https://doi.org/10.1001/jama.292.7.828.

Moriguchi, S., & Kaneyasu, M. (2004). Role of vitamin E in immune system. Journal of Clinical Biochemistry and Nutrition, 34(3), 97–109. https://doi.org/10.3164/jcbn.34.97.

Mossink, J. P. (2020). Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutrition, Prevention & Health, 3(1), 111. https://doi.org/10.1136/bmjnph-2020-000095.

Munoz, C., Rios, E., Olivos, J., Brunser, O., & Olivares, M. (2007). Iron, copper and immunocompetence. British Journal of Nutrition, 98(S1), S24–S28. https://doi.org/10.1017/S0007114507833046.

Muscogiuri, G., Barrea, L., Savastano, S., & Colao, A. (2020). Nutritional recommendations for CoVID-19 quarantine. European Journal of Clinical Nutrition, 74(6), 850–851.

Pan, M., Cederbaum, A. I., Zhang, Y.-L., Ginsberg, H. N., Williams, K. J., & Fisher, E. A. (2004). Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. The Journal of Clinical Investigation, 113(9), 1277–1287. https://doi.org/10.1172/JCI19197.

Percival, S. S. (1998). Copper and immunity. The American Journal of Clinical Nutrition, 67(5), S1064–S1068. https://doi.org/10.1093/ajcn/67.5.1064S.

Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Medical Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814.

Science, M., Johnstone, J., Roth, D. E., Guyatt, G., & Loeb, M. (2012). Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Cmaj, 184(10), E551–E561. https://doi.org/2012. DOI:10.1503 /cmaj.111990.

Shankar, A. H., & Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered resistance to infection. The American Journal of Clinical Nutrition, 68(2), 447S-463S. https://doi.org/10.1093/ajcn/68.2.447S.

Sharifi, A., Vahedi, H., Nedjat, S., Rafiei, H., & Hosseinzadeh‐Attar, M. J. (2019). Effect of single‐dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo‐controlled trial. Apmis, 127(10), 681–687. https://doi.org/10.1111/apm.12982.

Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., & Jourdain, M. (2020). High prevalence of obesity in severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) requiring invasive mechanical ventilation. Obesity, 28(7), 1195–1199. https://doi.org/10.1002/oby.22831.

Stipp, M. M. (2020). SARS-CoV-2: micronutrient optimization in supporting host immunocompetence. International Journal of Clinical Case Reports and Reviews, 2(2), 1–10. https://doi.org/10.31579/2690-4861/024.

Suárez-Machecha, H., Francisco, A. D., Beirão, L. H., Block, J. M., Saccol, A., & Pardo, S. C. (2002). Importância de ácidos graxos poliinsaturados presentes em peixes de cultivo e de ambiente natural para a nutrição humana. Boletim Do Instituto de Pesca, 28(1), 101–110.

Suzuki, H., Kume, A., & Herbas, M. S. (2018). Potential of vitamin E deficiency, induced by inhibition of α-tocopherol efflux, in murine malaria infection. International Journal of Molecular Sciences, 20(1), 64. https://doi.org/10.3390/ijms20010064.

Teymoori‐Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. https://doi.org/10.1002/rmv.2032.

Trasino, S. E. (2020). A role for retinoids in the treatment of COVID‐19? Clinical and Experimental Pharmacology and Physiology, 47(10), 1765–1767. https://doi.org/10.1111/1440-1681.13354.

Velthuis, A. J. W., van den Worm, S. H. E., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11), e1001176. https://doi.org/10.1371/journal.ppat.1001176.

Wessels, I., Maywald, M., & Rink, L. (2017). Zinc as a gatekeeper of immune function. Nutrients, 9(12), 1286. https://doi.org/10.3390/nu9121286.

Willheim, M., Thien, R., Schrattbauer, K., Bajna, E., Holub, M., Gruber, R., Baier, K., Pietschmann, P., Reinisch, W., & Scheiner, O. (1999). Regulatory effects of 1α, 25-dihydroxyvitamin D3 on the cytokine production of human peripheral blood lymphocytes. The Journal of Clinical Endocrinology & Metabolism, 84(10), 3739–3744. https://doi.org/10.1210/jcem.84.10.6054.

Wimalawansa, S. J. (2020). Global epidemic of coronavirus—Covid-19: what can we do to minimize risks. European Journal of Biomedical, 7(3), 432–438.

Yaroshenko, F. O., Dvorska, J. E., Surai, P. F., & Sparks, N. H. C. (2003). elenium-enriched eggs as a source of selenium for human consumption. Applied Biotechnology, Food Science and Policy, 1(1), 13–23.

Published

2023-11-05

Issue

Section

Ciência e tecnologia de alimentos

How to Cite

Relationship of the egg’s nutritional properties with the functioning of the immune system: Review. (2023). Pubvet, 17(11), e1484. https://doi.org/10.31533/pubvet.v17n11e1484