Use of MALDI-TOF MS for identification of mycobacteria in clinical samples from animals

Authors

DOI:

https://doi.org/10.31533/pubvet.v17n7e1414

Keywords:

Espectrometria de massas, MALDI TOF MS, micobactérias

Abstract

The diagnosis of mycobacterial diseases in domestic and wild animals represents a big challenge in veterinary medicine. Although Mycobacterium bovis is the species of major interest for causing tuberculosis, nontuberculous mycobacteria (NTM) can also cause serious infections, named mycobacterioses, in animals and humans. Mycobacterial diseases are characterized by their chronic and progressive granulomatous development. The generation time of slow-growing species can reach up to twenty hours, making their isolation in traditional culture media take up to 90 days for slow-growing species and approximately six days for fast-growing species. In addition to being fastidious, they have a cell wall rich in lipids and mycolic acids, which makes DNA extraction difficult, interfering with many molecular methods used in attempting to speed up diagnoses. Although the differentiation between species has advanced in recent years with the use of more specific molecular methods, in very genetically close species, this process is still quite challenging, stimulating the development of new technologies. Mass spectrometry methodologies like MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization- Time-of-Flight Mass Spectrometry) have been used as a microbiological identification tool in clinical laboratories, food industries and hospitals. In this article, the main aspects related to the use of this tool for the identification of mycobacteria from animal clinical samples will be discussed.

References

Allix-Béguec, C., Fauville-Dufaux, M., Stoffels, K., Ommeslag, D., Walravens, K., Saegerman, C. & Supply, P. (2010). Importance of identifying Mycobacterium bovis as a causative agent of human tuberculosis. European Respiratory Journal, 35(3), 692–694. https://doi.org/10.1183/09031936.00137309.

Almeida, A. L. P., Totola, G. O. H., Pimentel, J. & Júnior, P. S. A. (2022). MALDI-TOF: importância e aplicabilidade na microbiologia hospitalar.

APHL. (2019). Association of Public Health Laboratories. Infectious diseases: Best practices for identification of Mycobacterium species using matrix-assisted laser desorption ionization-time off light mass spectrometry.

Assis, D. M., Juliano, L. & Juliano, M. A. (2011). A espectrometria de massas aplicada na classificação e identificação de microorganismos http://dx. doi. org/10.5892/ruvrv. 2011.92. 344355. Revista Da Universidade Vale Do Rio Verde, 9(2), 344–355. https://doi.org/10.5892/ruvrv.2011.92.344355.

Bacanelli, G., Olarte, L. C., Silva, M. R., Rodrigues, R. A., Carneiro, P. A. M., Kaneene, J. B., Pasquatti, T. N., Takatani, H., Zumarraga, M. J. & Etges, R. N. (2019). Matrix assisted laser desorption ionization-time-of-flight mass spectrometry identification of Mycobacterium bovis in Bovinae. Journal of Veterinary Medical Science, 81(10), 1400–1408. https://doi.org/10.1292/jvms.19-0214.

Balada-Llasat, J. M., Kamboj, K. & Pancholi, P. (2013). Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization–time of flight mass spectrometry in the clinical laboratory. Journal of Clinical Microbiology, 51(9), 2875–2879. https://doi.org/10.1128/jcm.00819-13.

Borham, M., Oreiby, A., El-Gedawy, A., Hegazy, Y., Khalifa, H. O., Al-Gaabary, M. & Matsumoto, T. (2022). Review on bovine tuberculosis; na emerging disesase associated with multidrug-resistant Mycobacterium species. Pathogens, 11(715), 2–25. https://doi.org/10.3390/pathogens11070715.

Cao, Y., Wang, L., Ma, P., Fan, W., Gu, B. & Ju, S. (2018). Accuracy of matrix-assisted laser desorption ionization–time of flight mass spectrometry for identification of mycobacteria: a systematic review and meta-analysis. Scientific Reports, 8(1), 1–9. https://doi.org/10.1042/BSR20190859.

Carbonnelle, E., Mesquita, C., Bille, E., Day, N., Dauphin, B., Beretti, J., Ferroni, A., Gutmann, L. & Nassif, X. (2011). MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Bio Tribune Magazine, 39, 35–42. https://doi.org/10.1016/j.clinbiochem.2010.06.017.

Carneiro, P. A. M., Takatani, H., Pasquatti, T. N., Silva, C. B. D. G., Norby, B., Wilkins, M. J., Zumárraga, M. J., Araujo, F. R. & Kaneene, J. B. (2019). Epidemiological study of Mycobacterium bovis infection in buffalo and cattle in Amazonas, Brazil. Frontiers in Veterinary Science, 6, 434. https://doi.org/10.3389/fvets.2019.00434.

Carrisoza-Urbina, J., Morales-Salinas, E., Bedolla-Alva, M. A., Hernández-Pando, R. & Gutiérrez-Pabello, J. A. (2019). Atypical granuloma formation in Mycobacterium bovis-infected calves. PloS One, 14(7), e0218547. https://doi.org/10.1371/journal.pone.0218547.

Cunha, R. B., Castro, M. de S. & Fontes, W. (2006). Espectrometria de massa de proteínas. Biotecnologia Ciência & Desenvolvimento, 36, 40–46.

Didkowska, A., Krajewska-Wędzina, M., Klich, D., Prolejko, K., Orłowska, B. & Anusz, K. (2021). The Risk of False-Positive Serological Results for Paratuberculosis in Mycobacterium bovis-Infected Cattle. Pathogens, 10(8), 1054. https://doi.org/10.3390/pathogens10081054.

Duncan, M. & DeMarco, M. L. (2019). Maldi-Ms: emerging roles in pathology and laboratory medicine. Clinical Mass Spectrometry, 13, 1–4. https://doi.org/10.1016/j.clinms.2019.05.003.

Fernández-Esgueva, M., Fernández-Simon, R., Monforte-Cirac, M. L., López-Calleja, A. I., Fortuño, B. & Viñuelas-Bayon, J. (2021). Use of MALDI-TOF MS (Bruker Daltonics) for identification of Mycobacterium species isolated directly from liquid medium. Enfermedades Infecciosas y Microbiologia Clínica, 39(5), 241–243. https://doi.org/10.1016/j.eimc.2020.05.011.

Ferreira, M. M. C. (2019). Espectrometria de Massa (MADI-TOF MS) aplicada ao laboratório de microbiologia clínica: Uma revisão bibliográfica. Universidade Federal Fluminense.

Griffiths, J. (2008). Una breve história de la espectrometría de masas. Analytical Chemistry, 80(15), 5678–5683. https://doi.org/10.1021/ac8013065.

Gupta, R. S., Lo, B. & Son, J. (2018). Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, 9, 67. https://doi.org/10.3389/fmicb.2018.00067.

Krajewska-Wedzina, M., Augustynowicz-Kopec, E., Weiner, M. & Szulowski, K. (2018). Treatment for active tuberculosis in giraffe (Giraffa camelopardalis) in a Zoo and potential consequences for public health-case report. Annals of Agricultural and Environmental Medicine, 25(4), 593–595. https://doi.org/10.26444/aaem/75685.

Kumar, D., Nath, L., Kamal, M. A., Varshney, A., Jain, A., Singh, S. & Rao, K. V. S. (2010). Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell, 140(5), 731–743. https://doi.org/10.1016/j.cell.2010.02.012.

Lan, Z., Bastos, M. & Menzies, D. (2016). Treatment of human disease due to Mycobacterium bovis: a systematic review. European Respiratory Journal, 48(5), 1500–1503. https://doi.org/10.1183/13993003.

Maier, T., Klepel, S., Renner, U. & Kostrzewa, M. (2006). Fast and reliable MALDI-TOF MS–based microorganism identification. Nature Publishing Group US New York.

Malama, S., Munyeme, M., Mwanza, S. & Muma, J. B. (2014). Isolation and characterization of non-tuberculous mycobacteria from humans and animals in Namwala District of Zambia. BMC Research Notes, 7(1), 1–5. https://doi.org/10.1186/1756-0500-7-622.

Mediavilla-Gradolph, M. C., Toro-Peinado, D., Bermúdez-Ruiz, M. P., García-Martínez, M. de los Á., Ortega-Torres, M., Montiel Quezel-Guerraz, N. & Palop-Borrás, B. (2015). Use of MALDI-TOF MS for identification of nontuberculous Mycobacterium species isolated from clinical specimens. BioMed Research International, 2015. https://doi.org/10.1155/2015/854078.

Melo, L. F. (2014). A utilização da espectrometria de massa MALDI-TOF na identificação de microrganismos no controle de qualidade farmacêutico. Universidade Federal de Minas Gerais.

Odoi, J. O., Ohya, K., Moribe, J., Takashima, Y., Sawai, K., Taguchi, K., Fukushi, H., Wada, T., Yoshida, S. & Asai, T. (2020). Isolation and antimicrobial susceptibilities of nontuberculous Mycobacteria from wildlife in Japan. Journal of Wildlife Diseases, 56(4), 851–862. https://doi.org/10.7589/2019-10-261.

Pan, C., Xu, S., Zhou, H., Fu, Y., Ye, M. & Zou, H. (2007). Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Analytical and Bioanalytical Chemistry, 387, 193–204. https://doi.org/10.1007/s00216-006-0905-4.

Park, S.-Y., Jang, S.-H., Oh, S.-O., Kim, J. A. & Hur, J.-S. (2014). An easy, rapid, and cost-effective method for DNA extraction from various lichen taxa and specimens suitable for analysis of fungal and algal strains. Mycobiology, 42(4), 311–316. https://doi.org/10.5941/MYCO.2014.42.4.311.

Pasternak, J. (2012). Novas metodologias de identificação de micro-organismos: MALDI-TOF. Einstein, 10(1), 118–119. https://doi.org/10.1590/S1679-45082012000100026.

Pavlik, I., Ulmann, V. & Falkinham III, J. O. (2022). Nontuberculous Mycobacteria: Ecology and Impact on Animal and Human Health. In Microorganisms (Vol. 10, Issue 8, p. 1516). MDPI. https://doi.org/103390/microorganisms10081516.

Peixoto, A. S., Montenegro, L. M. L., Lima, A. S., Melo, F. L., Barbosa Júnior, W. L., Neves, M. M. C., Ramos, J. P., Schindler, H. C. & Medeiros, Z. M. (2020). Identification of nontuberculous mycobacteria species by multiplex real-time PCR with high-resolution melting. Revista Da Sociedade Brasileira de Medicina Tropical, 53, e20200211. https://doi.org/10.1590/0037-8682-0211-2020.

Radomski, N., Kreitmann, L., McIntosh, F. & Behr, M. A. (2013). The critical role of DNA extraction for detection of mycobacteria in tissues. PLoS One, 8(10), e78749. https://doi.org/10.1371/journal.pone.0078749.

Sattar, A., Zakaria, Z., Abu, J., Aziz, S. A. & Rojas-Ponce, G. (2021). Isolation of Mycobacterium avium and other nontuberculous mycobacteria in chickens and captive birds in peninsular Malaysia. BMC Veterinary Research, 17(1), 1–13. https://doi.org/10.1186/s12917-020-02695-8.

Tsuchida, S., Umemura, H. & Nakayama, T. (2020). Current status of matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) in clinical diagnostic microbiology. Molecules, 25(20), 4775. https://doi.org/10.3390/molecules25204775.

Varela‐Castro, L., Barral, M., Arnal, M. C., Fernández de Luco, D., Gortázar, C., Garrido, J. M. & Sevilla, I. A. (2022). Beyond tuberculosis: Diversity and implications of non‐tuberculous mycobacteria at the wildlife–livestock interface. Transboundary and Emerging Diseases, 69(5), e2978–e2993. https://doi.org/10.1111/tbed.14649.

Varela-Castro, L., Lara-Vergara, J., Ortega, N., Salinas, J., Colom-Cadena, A., Lavín, S., Tizzani, P., Velarde, R., Serrano, E. & Mentaberre, G. (2017). Endemic caseous lymphadenitis in a wild Caprinae population. Veterinary Record, 180(16), 405.

Zimpel, C. K., Patané, J. S. L., Guedes, A. C. P., Souza, R. F., Silva-Pereira, T. T., Camargo, N. C. S., de Souza Filho, A. F., Ikuta, C. Y., Neto, J. S. F. & Setubal, J. C. (2020). Global distribution and evolution of Mycobacterium bovis lineages. Frontiers in Microbiology, 11, 843. https://doi.org/10.3389/fmicb.2020.00843.

Zulu, M., Monde, N., Nkhoma, P., Malama, S. & Munyeme, M. (2021). Nontuberculous mycobacteria in humans, animals, and water in Zambia: a systematic review. Frontiers in Tropical Diseases, 2, a679501. https://doi.org/10.3389/fitd.2021.679501.

Published

2023-07-06

Issue

Section

Medicina veterinária

How to Cite

Use of MALDI-TOF MS for identification of mycobacteria in clinical samples from animals. (2023). Pubvet, 17(07), e1414. https://doi.org/10.31533/pubvet.v17n7e1414

Most read articles by the same author(s)