Coronavírus canino pantrópico induz polarização de macrófagos M1 caninos in vitro
DOI:
https://doi.org/10.31533/pubvet.v17n6e1405Palavras-chave:
apoptose, CCoV, macrófagos, metabolismo mitocondrial, enterite viralResumo
As infecções emergentes por coronavírus constituem uma grande ameaça para a saúde pública mundial. A este respeito, foi descrita uma nova recombinação do coronavírus canino (CCoV) e do coronavírus felino (FCoV) em amostras biológicas humanas, dando origem a uma potencial zoonose. Apesar de todos os esforços, a resposta imunitária vírus-hospedeiro relacionada com o CCoV ainda não é conhecida. Neste estudo, foi efetuada uma infecção pantrópica por CCoV em macrófagos caninos derivados de monócitos do sangue periférico. Após a infecção, os macrófagos foram primeiramente polarizados para o fenótipo M1 e/ou M2. Além disso, foram medidas a cinética da infecção, a viabilidade celular, a apoptose, a disfunção mitocondrial associada a espécies reativas de oxigênio e a produção de óxido nítrico. Os nossos resultados demonstraram que a infecção pelo vírus polarizou principalmente os macrófagos do hospedeiro para o fenótipo classicamente ativado (M1), como demonstrado pela morfologia ameboide com numerosos processos citoplasmáticos fibrilares seguidos de fenótipos clássicos. A infecção viral produziu novas partículas 18 horas pós-infecção, associadas a uma diminuição das células viáveis. Além disso, após a infecção por CCoV, as células M1 exibiram propriedades de fagocitose reduzidas, conforme evidenciado por um ensaio de absorção de vermelho neutro. Este método in vitro representa uma via para novos estudos sobre a interação vírus-hospedeiro.
Referências
Alfano, F., Fusco, G., Mari, V., Occhiogrosso, L., Miletti, G., Brunetti, R., Galiero, G., Desario, C., Cirilli, M., & Decaro, N. (2020). Circulation of pantropic canine coronavirus in autochthonous and imported dogs, Italy. Transboundary and Emerging Diseases, 67(5), 1991–1999. https://doi.org/10.1111/tbed.13542.
Baldanta, S., Fernandez-Escobar, M., Acin-Perez, R., Albert, M., Camafeita, E., Jorge, I., Vazquez, J., Enríquez, J. A., & Guerra, S. (2017). ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathogens, 13(10), e1006651. https://doi.org/10.1371/journal.ppat.1006651.
Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 64(6), 1011–1033. https://doi.org/10.3390/v4061011.
Beniac, D. R., Andonov, A., Grudeski, E., & Booth, T. F. (2006). Architecture of the SARS coronavirus prefusion spike. Nature Structural & Molecular Biology, 13(8), 751–752. https://doi.org/10.1038/nsmb1123.
Chen, S., Liu, D., Tian, J., Kang, H., Guo, D., Jiang, Q., Liu, J., Li, Z., Hu, X., & Qu, L. (2019). Molecular characterization of HLJ-073, a recombinant canine coronavirus strain from China with an ORF3abc deletion. Archives of Virology, 164(8), 2159–2164. https://doi.org/10.1007/s00705-019-04296-9.
Cron, R. Q., Goyal, G., & Chatham, W. W. (2023). Cytokine storm syndrome. Annual Review of Medicine, 74, 321–337. https://doi.org/10.1146/annurev-med-042921-112837.
Dalskov, L., Møhlenberg, M., Thyrsted, J., Blay‐Cadanet, J., Poulsen, E. T., Folkersen, B. H., Skaarup, S. H., Olagnier, D., Reinert, L., & Enghild, J. J. (2020). SARS‐CoV‐2 evades immune detection in alveolar macrophages. EMBO Reports, 21(12), e51252. https://doi.org/10.15252/embr.202051252.
Dean, G. A., Olivry, T., Stanton, C., & Pedersen, N. C. (2003). In vivo cytokine response to experimental feline infectious peritonitis virus infection. Veterinary Microbiology, 97(1–2), 1–12. https://doi.org/10.1016/j.vetmic.2003.08.010.
Decaro, N. & Buonavoglia, C. (2008). An update on canine coronaviruses: viral evolution and pathobiology. Veterinary Microbiology, 132(3–4), 221–234. https://doi.org/10.1016/j.vetmic.2008.06.007.
Decaro, N., Campolo, M., Lorusso, A., Desario, C., Mari, V., Colaianni, M. L., Elia, G., Martella, V. & Buonavoglia, C. (2008). Experimental infection of dogs with a novel strain of canine coronavirus causing systemic disease and lymphopenia. Veterinary Microbiology, 128(3–4), 253–260. https://doi.org/10.1016/j.vetmic.2007.10.008.
Decaro, N., Elia, G., Martella, V., Campolo, M., Mari, V., Desario, C., Lucente, M. S., Lorusso, E., Kanellos, T., & Gibbons, R. H. (2010). Immunity after natural exposure to enteric canine coronavirus does not provide complete protection against infection with the new pantropic CB/05 strain. Vaccine, 28(3), 724–729. https://doi.org/10.1016/j.vaccine.2009.10.077.
Decaro, N., & Lorusso, A. (2020). Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Veterinary Microbiology, 244, 108693. https://doi.org/10.1016/j.vetmic.2020.108693.
Decaro, N., Martella, V., Elia, G., Campolo, M., Desario, C., Cirone, F., Tempesta, M., & Buonavoglia, C. (2007). Molecular characterisation of the virulent canine coronavirus CB/05 strain. Virus Research, 125(1), 54–60. https://doi.org/10.1016/j.virusres.2006.12.006.
El-Bacha, T., & Da Poian, A. T. (2013). Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. The International Journal of Biochemistry & Cell Biology, 45(1), 41–46. https://doi.org/10.1016/j.biocel.2012.09.021.
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337.
Enjuanes, L., Almazán, F., Sola, I., & Zuniga, S. (2006). Biochemical aspects of coronavirus replication and virus-host interaction. Annual Review of Microbiology, 60, 211–230. https://doi.org/10.1146/annurev.micro.60.080805.142157.
Gioti, K., Kottaridi, C., Voyatzaki, C., Chaniotis, D., Rampias, T., & Beloukas, A. (2021). Animal coronaviruses induced apoptosis. Life, 11, 185. https://doi.org/10.3390/life11030185.
Groot, R. J., Baker, S. C., Baric, R., Enjuanes, L., Gorbalenya, A. E., Holmes, K. V, Perlman, S., Poon, L., Rottier, P. J. M., & Talbot, P. J. (2011). Family coronaviridae (pp. 1–23). Elsevier.
Heinrich, F., Lehmbecker, A., Raddatz, B. B., Kegler, K., Tipold, A., Stein, V. M., Kalkuhl, A., Deschl, U., Baumgärtner, W., & Ulrich, R. (2017). Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro. PloS One, 12(8), e0183572. https://doi.org/10.1371/journal.pone.0183572.
Hossain, M. E., Islam, A., Islam, S., Rahman, M. K., Miah, M., Alam, M. S., & Rahman, M. Z. (2021). Detection and Molecular Characterization of Canine Alphacoronavirus in Free-Roaming Dogs, Bangladesh. Viruses, 14(1), 67. https://doi.org/10.3390/v14010067.
Khatua, S., Simal-Gandara, J., & Acharya, K. (2022). Understanding immune-modulatory efficacy in vitro. Chemico-Biological Interactions, 352, 109776. https://doi.org/10.1016/j.cbi.2021.109776.
Knoll, R., Schultze, J. L., & Schulte-Schrepping, J. (2021). Monocytes and Macrophages in COVID-19. Frontiers in Immunology, 12, 720109. https://doi.org/10.3389/fimmu.2021.720109.
Lemke, G. (2019). How macrophages deal with death. Nature Reviews Immunology, 19, 539–549. https://doi.org/10.1038/s41577-019-0167-y.
Licitra, B. N., Whittaker, G. R., Dubovi, E. J., & Duhamel, G. E. (2014). Genotypic characterization of canine coronaviruses associated with fatal canine neonatal enteritis in the United States. Journal of Clinical Microbiology, 52(12), 4230–4238. https://doi.org/10.1128/JCM.02158-14.
Liu, S.-L., & Saif, L. (2020). Emerging viruses without borders: the Wuhan coronavirus. In Viruses (Vol. 12, Issue 2, p. 130). MDPI. https://doi.org/10.3390/v12020130.
Marfè, G., Tafani, M., Fiorito, F., Pagnini, U., Iovane, G., & De Martino, L. (2011). Involvement of FOXO transcription factors, TRAIL-FasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis. PLoS One, 6(11), e27313. https://doi.org/10.1371/journal.pone.0027313.
Marinaro, M., Mari, V., Bellacicco, A. L., Tarsitano, E., Elia, G., Losurdo, M., Rezza, G., Buonavoglia, C., & Decaro, N. (2010). Prolonged depletion of circulating CD4+ T lymphocytes and acute monocytosis after pantropic canine coronavirus infection in dogs. Virus Research, 152(1–2), 73–78. https://doi.org/10.1016/j.viruses.2010.06.006.
Merad, M., & Martin, J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 20(6), 355–362. https://doi.org/10.1038/s41577-020-0331-4.
Ntafis, V., Xylouri, E., Mari, V., Papanastassopoulou, M., Papaioannou, N., Thomas, A., Buonavoglia, C., & Decaro, N. (2012). Molecular characterization of a canine coronavirus NA/09 strain detected in a dog’s organs. Archives of Virology, 157, 171–175. https://doi.org/10.1007/s00705-011-1141-6.
Ohta, A., & Nishiyama, Y. (2011). Mitochondria and viruses. Mitochondrion, 11(1), 1–12. https://doi.org/10.1016/j.mito.2010.08.006.
Perlman, S., & Netland, J. (2009). Coronaviruses post-SARS: update on Coronaviruses post-SARS: update on. Nature Reviews Microbiology, 7(6), 439–450. https://doi.org/10.1038/nrmicro2147.
Poon, I. K. H., Hulett, M. D., & Parish, C. R. (2010). Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death & Differentiation, 17(3), 381–397. https://doi.org/10.1038/cdd.2009.195.
Pratelli, A. (2011). Basic science track entry and release of canine coronavirus from polarized epithelial cells. Quarterly Journal of Microbiological Sciences, 34(1), 25–32.
Rottier, P. J. M., Nakamura, K., Schellen, P., Volders, H., & Haijema, B. J. (2005). Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. Journal of Virology, 79(22), 14122–14130. https://doi.org/10.1128/JVI.79.22.14122-14130.2005.
Ruggieri, A., Di Trani, L., Gatto, I., Franco, M., Vignolo, E., Bedini, B., Elia, G., & Buonavoglia, C. (2007). Canine coronavirus induces apoptosis in cultured cells. Veterinary Microbiology, 121, 64–72. https://doi.org/10.1016/j.vetmic.2006.12.016.
Saleh, J., Peyssonnaux, C., Singh, K. K., & Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion, 54, 1–7. https://doi.org/10.1016/j.mito.2020.06.008.
Sanz, A. B., Sanchez-Niño, M. D., Izquierdo, M. C., Gonzalez-Espinoza, L., Ucero, A. C., Poveda, J., Ruiz-Andres, O., Ruiz-Ortega, M., Selgas, R., Egido, J., & Ortiz, A. (2014). Macrophages and recently identified forms of cell death. International Reviews of Immunology, 33, 9–22. https://doi.org/10.3109/08830185.2013.771183.
Scott, I. (2010). The role of mitochondria in the mammalian antiviral defense system. Mitochondrion, 10, 316–320. https://doi.org/10.1016/j.mito.2010.02.005.
Tian, Z., Pan, Q., Zheng, M., Deng, Y., Guo, P., Cong, F., & Hu, X. (2021). Molecular characterization of the FCoV-like canine coronavirus HLJ-071 in China. BMC Veterinary Research, 17, 1–9. https://doi.org/10.1186/s12917-021-03073-8.
Timurkan, M. O., Aydin, H., Dincer, E., & Coskun, N. (2021). Molecular characterization of canine coronaviruses: an enteric and pantropic approach. Archives of Virology, 166, 35–42. https://doi.org/10.1007/s00705-020-04826-w.
Uchida, M., Uchida, K., Maeda, S., & Yonezawa, T. (2019). Expression of apoptosis inhibitor of macrophages in tissue macrophages, leukocytes and vascular endothelial cells of dogs. Tissue and Cell, 58, 112–120. https://doi.org/10.1016/j.tice.2019.05.002.
Vieira, F. V, Vieira, D. S., Gameiro, R., Ferreira, H. L., & Cardoso, T. C. (2018). Digital PCR Platform as a Tool to Determine the Canine Coronavirus (CCoV) Genome in Clinical Samples. Archives on Veterinary Science and Technology, 4(2), 1–5. https://doi.org/10.29011/2637-9988/100042.
Vlasova, A. N., Diaz, A., Damtie, D., Xiu, L., Toh, T.-H., Lee, J. S.-Y., Saif, L. J., & Gray, G. C. (2022). Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clinical Infectious Diseases, 74(3), 446–454. https://doi.org/10.1093/cid/ciab456.
Vlasova, A. N., Toh, T.-H., Lee, J. S.-Y., Poovorawan, Y., Davis, P., Azevedo, M. S. P., Lednicky, J. A., Saif, L. J., & Gray, G. C. (2022). Animal alphacoronaviruses found in human patients with acute respiratory illness in different countries. Emerging Microbes & Infections, 11(1), 699–702. https://doi.org/10.1080/22221751.2022.2040341
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Flávia Volpato Vieira, Rebeca Figueiredo Nalesso, Letícia Colin Panegossi, Icaro Alex'Sanderson Pereira Godoy, Jamila Cristina Baptistella, Tereza Cristina Cardoso
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Você tem o direito de:
Compartilhar — copiar e redistribuir o material em qualquer suporte ou formato
Adaptar — remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial.
O licenciante não pode revogar estes direitos desde que você respeite os termos da licença. De acordo com os termos seguintes:
Atribuição
— Você deve dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas. Você deve fazê-lo em qualquer circunstância razoável, mas de nenhuma maneira que sugira que o licenciante apoia você ou o seu uso. Sem restrições adicionais
— Você não pode aplicar termos jurídicos ou medidas de caráter tecnológico que restrinjam legalmente outros de fazerem algo que a licença permita.